
If \[A = dig(2, - 1,3)\], $B = dig( - 1,3,2)$ then ${A^2}B = $
A $dig(5,4,11)$
B $dig( - 4,3,18)$
C $dig(3,1,8)$
D B
Answer
232.8k+ views
Hint: First we will convert given diagonal matrix A and B into $3 \times 3$ matrix. Then will find the ${A^2}$ using the product of matrices. Then multiply the resultant matrix ${A^2}$ with matrix $B$. Then convert the $3 \times 3$ matrix into a diagonal matrix.
Complete step by step Solution:
We know that $dig(a,b,c) = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$
Converting given A diagonal matrix into $3 \times 3$ matrix
$A = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
$B = dig( - 1,3,2)$
Converting given diagonal matrix B into $3 \times 3$ matrix
$B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]$
We know that ${A^2} = A.A$
${A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
After multiplication, we will get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{4 + 0 + 0}&0&0 \\
0&{0 + 1 + 0}&0 \\
0&0&{0 + 0 + 9}
\end{array}} \right]$
After solving, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]$
\[{A^2}B = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]\]
After multiplication, we will get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4 + 0 + 0}&0&0 \\
0&{0 + 3 + 0}&0 \\
0&0&{0 + 0 + 18}
\end{array}} \right]$
After solving this, we get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4}&0&0 \\
0&3&0 \\
0&0&{18}
\end{array}} \right]$
Converting $3 \times 3$ matrix into diagonal matrix
${A^2}B = dig( - 4,3,18)$
Therefore, the correct option is (B).
Note:Students should know how to convert the diagonal matrix into $3 \times 3$ matrix correctly to avoid any mistakes. And do calculations correctly to get the correct required solution.
Complete step by step Solution:
We know that $dig(a,b,c) = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$
Converting given A diagonal matrix into $3 \times 3$ matrix
$A = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
$B = dig( - 1,3,2)$
Converting given diagonal matrix B into $3 \times 3$ matrix
$B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]$
We know that ${A^2} = A.A$
${A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
After multiplication, we will get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{4 + 0 + 0}&0&0 \\
0&{0 + 1 + 0}&0 \\
0&0&{0 + 0 + 9}
\end{array}} \right]$
After solving, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]$
\[{A^2}B = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]\]
After multiplication, we will get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4 + 0 + 0}&0&0 \\
0&{0 + 3 + 0}&0 \\
0&0&{0 + 0 + 18}
\end{array}} \right]$
After solving this, we get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4}&0&0 \\
0&3&0 \\
0&0&{18}
\end{array}} \right]$
Converting $3 \times 3$ matrix into diagonal matrix
${A^2}B = dig( - 4,3,18)$
Therefore, the correct option is (B).
Note:Students should know how to convert the diagonal matrix into $3 \times 3$ matrix correctly to avoid any mistakes. And do calculations correctly to get the correct required solution.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

