
If \[A = dig(2, - 1,3)\], $B = dig( - 1,3,2)$ then ${A^2}B = $
A $dig(5,4,11)$
B $dig( - 4,3,18)$
C $dig(3,1,8)$
D B
Answer
218.7k+ views
Hint: First we will convert given diagonal matrix A and B into $3 \times 3$ matrix. Then will find the ${A^2}$ using the product of matrices. Then multiply the resultant matrix ${A^2}$ with matrix $B$. Then convert the $3 \times 3$ matrix into a diagonal matrix.
Complete step by step Solution:
We know that $dig(a,b,c) = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$
Converting given A diagonal matrix into $3 \times 3$ matrix
$A = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
$B = dig( - 1,3,2)$
Converting given diagonal matrix B into $3 \times 3$ matrix
$B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]$
We know that ${A^2} = A.A$
${A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
After multiplication, we will get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{4 + 0 + 0}&0&0 \\
0&{0 + 1 + 0}&0 \\
0&0&{0 + 0 + 9}
\end{array}} \right]$
After solving, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]$
\[{A^2}B = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]\]
After multiplication, we will get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4 + 0 + 0}&0&0 \\
0&{0 + 3 + 0}&0 \\
0&0&{0 + 0 + 18}
\end{array}} \right]$
After solving this, we get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4}&0&0 \\
0&3&0 \\
0&0&{18}
\end{array}} \right]$
Converting $3 \times 3$ matrix into diagonal matrix
${A^2}B = dig( - 4,3,18)$
Therefore, the correct option is (B).
Note:Students should know how to convert the diagonal matrix into $3 \times 3$ matrix correctly to avoid any mistakes. And do calculations correctly to get the correct required solution.
Complete step by step Solution:
We know that $dig(a,b,c) = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$
Converting given A diagonal matrix into $3 \times 3$ matrix
$A = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
$B = dig( - 1,3,2)$
Converting given diagonal matrix B into $3 \times 3$ matrix
$B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]$
We know that ${A^2} = A.A$
${A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
After multiplication, we will get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{4 + 0 + 0}&0&0 \\
0&{0 + 1 + 0}&0 \\
0&0&{0 + 0 + 9}
\end{array}} \right]$
After solving, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]$
\[{A^2}B = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]\]
After multiplication, we will get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4 + 0 + 0}&0&0 \\
0&{0 + 3 + 0}&0 \\
0&0&{0 + 0 + 18}
\end{array}} \right]$
After solving this, we get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4}&0&0 \\
0&3&0 \\
0&0&{18}
\end{array}} \right]$
Converting $3 \times 3$ matrix into diagonal matrix
${A^2}B = dig( - 4,3,18)$
Therefore, the correct option is (B).
Note:Students should know how to convert the diagonal matrix into $3 \times 3$ matrix correctly to avoid any mistakes. And do calculations correctly to get the correct required solution.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

