
If \[A = dig(2, - 1,3)\], $B = dig( - 1,3,2)$ then ${A^2}B = $
A $dig(5,4,11)$
B $dig( - 4,3,18)$
C $dig(3,1,8)$
D B
Answer
162.6k+ views
Hint: First we will convert given diagonal matrix A and B into $3 \times 3$ matrix. Then will find the ${A^2}$ using the product of matrices. Then multiply the resultant matrix ${A^2}$ with matrix $B$. Then convert the $3 \times 3$ matrix into a diagonal matrix.
Complete step by step Solution:
We know that $dig(a,b,c) = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$
Converting given A diagonal matrix into $3 \times 3$ matrix
$A = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
$B = dig( - 1,3,2)$
Converting given diagonal matrix B into $3 \times 3$ matrix
$B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]$
We know that ${A^2} = A.A$
${A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
After multiplication, we will get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{4 + 0 + 0}&0&0 \\
0&{0 + 1 + 0}&0 \\
0&0&{0 + 0 + 9}
\end{array}} \right]$
After solving, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]$
\[{A^2}B = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]\]
After multiplication, we will get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4 + 0 + 0}&0&0 \\
0&{0 + 3 + 0}&0 \\
0&0&{0 + 0 + 18}
\end{array}} \right]$
After solving this, we get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4}&0&0 \\
0&3&0 \\
0&0&{18}
\end{array}} \right]$
Converting $3 \times 3$ matrix into diagonal matrix
${A^2}B = dig( - 4,3,18)$
Therefore, the correct option is (B).
Note:Students should know how to convert the diagonal matrix into $3 \times 3$ matrix correctly to avoid any mistakes. And do calculations correctly to get the correct required solution.
Complete step by step Solution:
We know that $dig(a,b,c) = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$
Converting given A diagonal matrix into $3 \times 3$ matrix
$A = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
$B = dig( - 1,3,2)$
Converting given diagonal matrix B into $3 \times 3$ matrix
$B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]$
We know that ${A^2} = A.A$
${A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 1}&0 \\
0&0&3
\end{array}} \right]$
After multiplication, we will get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{4 + 0 + 0}&0&0 \\
0&{0 + 1 + 0}&0 \\
0&0&{0 + 0 + 9}
\end{array}} \right]$
After solving, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]$
\[{A^2}B = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&1&0 \\
0&0&9
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&3&0 \\
0&0&2
\end{array}} \right]\]
After multiplication, we will get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4 + 0 + 0}&0&0 \\
0&{0 + 3 + 0}&0 \\
0&0&{0 + 0 + 18}
\end{array}} \right]$
After solving this, we get
${A^2}B = \left[ {\begin{array}{*{20}{c}}
{ - 4}&0&0 \\
0&3&0 \\
0&0&{18}
\end{array}} \right]$
Converting $3 \times 3$ matrix into diagonal matrix
${A^2}B = dig( - 4,3,18)$
Therefore, the correct option is (B).
Note:Students should know how to convert the diagonal matrix into $3 \times 3$ matrix correctly to avoid any mistakes. And do calculations correctly to get the correct required solution.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIIT JEE Main Cutoff 2024

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Main Cut-Off for VNIT Nagpur 2025: Check All Rounds Cutoff Ranks

Other Pages
NEET 2025: All Major Changes in Application Process, Pattern and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025: Important Information and Key Updates

1 Billion in Rupees - Conversion, Solved Examples and FAQs

NEET 2025 Syllabus PDF by NTA (Released)

Important Days In June: What Do You Need To Know
