
If A, B and C are three non-coplanar vectors, then $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$ equals
(a). 0
(b). $\left[ A,B,C \right]$
(c). $2\left[ A,B,C \right]$
(d). $-\left[ A,B,C \right]$
Answer
217.5k+ views
Hint: For solving this problem, first we solve the inner cross product of the three involved for non-coplanar vectors. Now, expanding the dot product of the given expression, we obtain a simplified result in the scalar triple product of vectors.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Understanding the Difference Between Pound and Kilogram

SN1 and SN2 Reactions Explained: Mechanisms, Differences, and Examples

Other Pages
Amortization Calculator – Loan Schedule, EMI & Table

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

