
If A, B and C are three non-coplanar vectors, then $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$ equals
(a). 0
(b). $\left[ A,B,C \right]$
(c). $2\left[ A,B,C \right]$
(d). $-\left[ A,B,C \right]$
Answer
230.4k+ views
Hint: For solving this problem, first we solve the inner cross product of the three involved for non-coplanar vectors. Now, expanding the dot product of the given expression, we obtain a simplified result in the scalar triple product of vectors.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Consider a set of 3n numbers having variance 4 In this class 12 maths JEE_Main

Find the entire length of the cardioid raleft 1+cos class 12 maths JEE_Main

A bag contains an assortment of blue and red balls class 12 maths JEE_Main

If A B and C are three noncoplanar vectors then left class 12 maths JEE_Main

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

