
If A, B and C are three non-coplanar vectors, then $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$ equals
(a). 0
(b). $\left[ A,B,C \right]$
(c). $2\left[ A,B,C \right]$
(d). $-\left[ A,B,C \right]$
Answer
162k+ views
Hint: For solving this problem, first we solve the inner cross product of the three involved for non-coplanar vectors. Now, expanding the dot product of the given expression, we obtain a simplified result in the scalar triple product of vectors.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Complete step-by-step solution -
Vectors are represented by directed line segments such that the length of the line segment is the magnitude of the vector and direction of the arrow marked is the direction of the vector. Three vectors are said to be non-coplanar, if their support lines are not parallel to the same plane or they cannot be expressed as $\overrightarrow{R}=x\overrightarrow{A}+y\overrightarrow{B}+z\overrightarrow{C}$.
According to the problem statement, we are given $\left( A+B+C \right)\cdot \left[ \left( A+B \right)\times \left( A+C \right) \right]$
Now, first expanding the cross product of the expression, we get
$\left( A+B+C \right)\cdot \left[ A\times A+A\times C+B\times A+B\times C \right]$
By using the identity $A\times A=0$, we simplify the expression as
$\left( A+B+C \right)\cdot \left[ A\times C+B\times A+B\times C \right]$
Now, on expanding the dot product and by using the identity that scalar triple product involving two similar vectors is zero, we get
\[\begin{align}
& A\cdot \left( A\times C \right)+A\cdot \left( B\times A \right)+A\cdot \left( B\times C \right)+B\cdot \left( A\times C \right)+B\cdot \left( B\times A \right)+B\cdot \left( B\times C \right)+C\cdot \left( A\times C \right) \\
& +C\cdot \left( B\times A \right)+C\cdot \left( B\times C \right) \\
& \Rightarrow C\cdot \left( B\times A \right)+B\cdot \left( A\times C \right)+A\cdot \left( B\times C \right) \\
\end{align}\]
Now, by using the property $C\cdot \left( B\times A \right)=-\left[ A,B,C \right],B\cdot \left( A\times C \right)=-\left[ A,B,C \right]\text{ and}\,A.\left( B\times C \right)=\left[ A,B,C \right]$, we get
\[\begin{align}
& \Rightarrow -\left[ A,B,C \right]-\left[ A,B,C \right]+\left[ A,B,C \right] \\
& \Rightarrow -\left[ A,B,C \right] \\
\end{align}\]
Therefore option (d) is correct.
Note: The key concept involved in solving this problem is the knowledge of scalar triple product of non-collinear vectors. Students must remember that the vectors are non collinear so their scalar triple product cannot be zero. Also, the negative sign due to clockwise rotation of vectors must be taken into account.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
