If \[4P(A) = 6P(B) = 10P(A \cap B) = 1\] then $P(\frac{B}{A}) = $ -------.
A.$\frac{2}{5}$
B.$\frac{3}{5}$
C.$\frac{7}{{10}}$
D.$\frac{{19}}{{60}}$
Answer
Verified
119.7k+ views
Hint: Here, to solve the given problem we use the conditional probability concept.
Given,
\[4P(A) = 6P(B) = 10P(A \cap B) = 1 \to (1)\]
Now, from equation 1, let us find ‘$P(A)$’, ‘$P(B)$’and ‘$P(A \cap B)$’ values.
$4P(A) = 1 \Rightarrow P(A) = \frac{1}{4}$
$6P(B) = 1 \Rightarrow P(B) = \frac{1}{6}$
$10P(A \cap B) = 1 \Rightarrow P(A \cap B) = \frac{1}{{10}}$
Here, we need to find the value of $P(B/A)$ i.e.., the probability of the event B after the
occurrence of event A.
So, to find the $P(B/A)$ let us consider the concept of conditional probability i.e..,
$P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \to (2)$
Let us substitute the obtained values of $P(A \cap B)$ and $P(A)$ in equation 2, we get
$
\Rightarrow P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \\
\Rightarrow P(B/A) = \frac{{\frac{1}{{10}}}}{{\frac{1}{4}}} \\
\Rightarrow P(B/A) = \frac{4}{{10}} \\
\Rightarrow P(B/A) = \frac{2}{5} \\
$
Hence, the obtained value of $P(B/A)$ is$\frac{2}{5}$.
Hence the correct option for the given question is ‘A’.
Note: As, to find the conditional probability of $P(B/A) = \frac{{P(A \cap B)}}{{P(A)}}$i.e.., the
probability of the event B after the occurrence of event A .The probability is defined only after the occurrence of event A i.e.., $P(A)$ should be greater than zero.
Given,
\[4P(A) = 6P(B) = 10P(A \cap B) = 1 \to (1)\]
Now, from equation 1, let us find ‘$P(A)$’, ‘$P(B)$’and ‘$P(A \cap B)$’ values.
$4P(A) = 1 \Rightarrow P(A) = \frac{1}{4}$
$6P(B) = 1 \Rightarrow P(B) = \frac{1}{6}$
$10P(A \cap B) = 1 \Rightarrow P(A \cap B) = \frac{1}{{10}}$
Here, we need to find the value of $P(B/A)$ i.e.., the probability of the event B after the
occurrence of event A.
So, to find the $P(B/A)$ let us consider the concept of conditional probability i.e..,
$P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \to (2)$
Let us substitute the obtained values of $P(A \cap B)$ and $P(A)$ in equation 2, we get
$
\Rightarrow P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \\
\Rightarrow P(B/A) = \frac{{\frac{1}{{10}}}}{{\frac{1}{4}}} \\
\Rightarrow P(B/A) = \frac{4}{{10}} \\
\Rightarrow P(B/A) = \frac{2}{5} \\
$
Hence, the obtained value of $P(B/A)$ is$\frac{2}{5}$.
Hence the correct option for the given question is ‘A’.
Note: As, to find the conditional probability of $P(B/A) = \frac{{P(A \cap B)}}{{P(A)}}$i.e.., the
probability of the event B after the occurrence of event A .The probability is defined only after the occurrence of event A i.e.., $P(A)$ should be greater than zero.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
A circular field has a circumference of 360km Two cyclists class 11 maths JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs