
If $3cot{\rm{A}} = 4$, check whether $\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = {\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$ or not.
Answer
232.8k+ views
Hint: We can use the right-angle triangle Pythagoras theorem and then find the values of $\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}}$ and ${\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$. Right angle means the angle is $90^\circ $. It consists of six trigonometric ratios such as sin, cosine, tan, cot, sec and cosec.
Complete step by step solution:
The given trigonometric equation is $3cot{\rm{A}} = 4$.
Let us first rearrange the above trigonometric equation:
$cot{\rm{A}} = \dfrac{4}{3}$
We know the formula $\tan {\rm{A}} = \dfrac{1}{{\cot {\rm{A}}}}$ and substitute the value $cot{\rm{A}} = \dfrac{4}{3}$ in $\tan {\rm{A}} = \dfrac{1}{{\cot {\rm{A}}}}$.
$\tan {\rm{A}} = \dfrac{1}{{\dfrac{4}{3}}}\\
= \dfrac{3}{4}$
Hence, the value of $\tan {\rm{A}}$ through the above result is $\dfrac{3}{4}$.
Now we can now draw a right-angled triangle on the basis of $\tan {\rm{A}} = \dfrac{3}{4}$.
Now, apply the right-angled triangle Pythagoras theorem for the above triangle.
${\left( {{\rm{Hypotenuse}}} \right)^2} = {\left( {{\rm{Height}}} \right)^2} + {\left( {{\rm{Base}}} \right)^2}\\
{\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}$
Substitute the values from the above diagram \[{\rm{AB}} = 4\] and \[{\rm{ BC}} = 3\] in ${\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}$.
${\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}\\
= {\left( 4 \right)^2} + {\left( 3 \right)^2}\\
= 16 + 9\\
= 25$
Take the square root of the above equation:
${\rm{AC}} = \sqrt {25} \\
= 5$
Hence, the hypotenuse of the triangle from the above result is 5.
Now we can use the basic formula of sine to calculate the value of $\sin {\rm{A}}$.
$\sin {\rm{A}} = \dfrac{{{\rm{Base}}}}{{{\rm{Hypotenuse}}}}\\
= \dfrac{{{\rm{BC}}}}{{{\rm{AC}}}}\\
= \dfrac{3}{5}
$
Hence, the value of $\sin {\rm{A}}$ from the above result is $\dfrac{3}{5}$.
Now, we can use the basic formula of sine to calculate the value of $\cos {\rm{A}}$.
$\cos {\rm{A}} = \dfrac{{{\rm{Height}}}}{{{\rm{Hypotenuse}}}}\\
= \dfrac{{{\rm{AB}}}}{{{\rm{AC}}}}\\
= \dfrac{4}{5}
$
Hence, the value of $\cos {\rm{A}}$ from the above result is $\dfrac{4}{5}$.
Now, we have to check whether,
$\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = {\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$
Take the left-hand side of the above equation and substitute the value $\tan {\rm{A}} = \dfrac{3}{4}$ in $\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}}$.
$\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = \dfrac{{1 - {{\left( {\dfrac{3}{4}} \right)}^2}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}}\\
= \dfrac{{1 - \dfrac{9}{{16}}}}{{1 + \dfrac{9}{{16}}}}\\
= \dfrac{{\dfrac{7}{{16}}}}{{\dfrac{{25}}{{16}}}}\\
= \dfrac{7}{{25}}
$
Now, take the right-hand side of the equation ${\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$ and substitute the values $\cos {\rm{A}} = \dfrac{4}{5}{\rm{ and }}\sin {\rm{A}} = \dfrac{3}{5}$ in ${\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$.
${\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}} = {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}\\
= \dfrac{{16}}{{25}} - \dfrac{9}{{25}}\\
= \dfrac{7}{{25}}
$
Hence, the left hand side is the same as right hand side.
Note: Here we use the Pythagoras theorem. The trigonometric values cosec, sec and cot are the opposite values of sine, cos and tan respectively. We solve the question with the left-hand side and right-hand side process.
Complete step by step solution:
The given trigonometric equation is $3cot{\rm{A}} = 4$.
Let us first rearrange the above trigonometric equation:
$cot{\rm{A}} = \dfrac{4}{3}$
We know the formula $\tan {\rm{A}} = \dfrac{1}{{\cot {\rm{A}}}}$ and substitute the value $cot{\rm{A}} = \dfrac{4}{3}$ in $\tan {\rm{A}} = \dfrac{1}{{\cot {\rm{A}}}}$.
$\tan {\rm{A}} = \dfrac{1}{{\dfrac{4}{3}}}\\
= \dfrac{3}{4}$
Hence, the value of $\tan {\rm{A}}$ through the above result is $\dfrac{3}{4}$.
Now we can now draw a right-angled triangle on the basis of $\tan {\rm{A}} = \dfrac{3}{4}$.
Now, apply the right-angled triangle Pythagoras theorem for the above triangle.
${\left( {{\rm{Hypotenuse}}} \right)^2} = {\left( {{\rm{Height}}} \right)^2} + {\left( {{\rm{Base}}} \right)^2}\\
{\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}$
Substitute the values from the above diagram \[{\rm{AB}} = 4\] and \[{\rm{ BC}} = 3\] in ${\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}$.
${\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}\\
= {\left( 4 \right)^2} + {\left( 3 \right)^2}\\
= 16 + 9\\
= 25$
Take the square root of the above equation:
${\rm{AC}} = \sqrt {25} \\
= 5$
Hence, the hypotenuse of the triangle from the above result is 5.
Now we can use the basic formula of sine to calculate the value of $\sin {\rm{A}}$.
$\sin {\rm{A}} = \dfrac{{{\rm{Base}}}}{{{\rm{Hypotenuse}}}}\\
= \dfrac{{{\rm{BC}}}}{{{\rm{AC}}}}\\
= \dfrac{3}{5}
$
Hence, the value of $\sin {\rm{A}}$ from the above result is $\dfrac{3}{5}$.
Now, we can use the basic formula of sine to calculate the value of $\cos {\rm{A}}$.
$\cos {\rm{A}} = \dfrac{{{\rm{Height}}}}{{{\rm{Hypotenuse}}}}\\
= \dfrac{{{\rm{AB}}}}{{{\rm{AC}}}}\\
= \dfrac{4}{5}
$
Hence, the value of $\cos {\rm{A}}$ from the above result is $\dfrac{4}{5}$.
Now, we have to check whether,
$\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = {\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$
Take the left-hand side of the above equation and substitute the value $\tan {\rm{A}} = \dfrac{3}{4}$ in $\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}}$.
$\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = \dfrac{{1 - {{\left( {\dfrac{3}{4}} \right)}^2}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}}\\
= \dfrac{{1 - \dfrac{9}{{16}}}}{{1 + \dfrac{9}{{16}}}}\\
= \dfrac{{\dfrac{7}{{16}}}}{{\dfrac{{25}}{{16}}}}\\
= \dfrac{7}{{25}}
$
Now, take the right-hand side of the equation ${\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$ and substitute the values $\cos {\rm{A}} = \dfrac{4}{5}{\rm{ and }}\sin {\rm{A}} = \dfrac{3}{5}$ in ${\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}$.
${\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}} = {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}\\
= \dfrac{{16}}{{25}} - \dfrac{9}{{25}}\\
= \dfrac{7}{{25}}
$
Hence, the left hand side is the same as right hand side.
Note: Here we use the Pythagoras theorem. The trigonometric values cosec, sec and cot are the opposite values of sine, cos and tan respectively. We solve the question with the left-hand side and right-hand side process.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

