Answer
Verified
88.2k+ views
Hint: The cost of an electronic Appliance depends on the amount of energy used by it. The commercial unit of energy is kWh. Thus the cost to switch on the heater can be calculated if we know the value of energy used by it in commercial units, which is kWh. Then we can find the cost by multiplying the cost of 1 electricity unit and the total kWh of energy consumed.
Formula used:
$Energy = Power \times Time$
$Power = Voltage \times Current$
Complete step by step solution:
Let V be the voltage across the heater
Voltage across the heater $V = 120$ volts
Converting it into kilovolts (therefore dividing it by 1000, as $1kV = 1000$ volts)
Thus, $V=0.12kV$
Let I be the current in the heater
Current flowing through the heater $I = 3A$
Formula for power of the heater is given by $P = VI$
By substituting the values, we get the value of power of the heater,
\[\therefore \;P = 0.12 \times 3 = 0.36\;kW\]
Let T be the time for which heater is used
Time of usage $(T) = 90{\text{ minutes}}$
Converting it into hours (therefore dividing it by $60$ , as \[1hr = 60mins\] )
Thus time of usage of heater\[ = 1.5{\text{ }}hrs\]
Thus energy consumed is given by $E = PT$
Substituting values,
\[E = 0.36 \times 1.5 = 0.54\;kWh\]
Now the total electricity units consumed by the heater are \[0.54\] kWh.
And cost of 1 unit of electricity \[ = 0.20\]
Cost to switch on heater for 90 minutes \[ = {\text{ }}\;0.54 \times 0.2\] \[ = 0.11\]
Hence, the right answer is (A) that is \[0.11\]
Note: The cost of using any electronic appliance can also be found by using a shortcut formula, that is
Cost \[ = {\text{ }}\dfrac{{\left( {V \times I \times T \times C} \right)}}{{1000}}\] where $V$ voltage in volts, $I$ is current in ampere, $T$ is time in hours and $C$ is cost of one electricity unit.
Formula used:
$Energy = Power \times Time$
$Power = Voltage \times Current$
Complete step by step solution:
Let V be the voltage across the heater
Voltage across the heater $V = 120$ volts
Converting it into kilovolts (therefore dividing it by 1000, as $1kV = 1000$ volts)
Thus, $V=0.12kV$
Let I be the current in the heater
Current flowing through the heater $I = 3A$
Formula for power of the heater is given by $P = VI$
By substituting the values, we get the value of power of the heater,
\[\therefore \;P = 0.12 \times 3 = 0.36\;kW\]
Let T be the time for which heater is used
Time of usage $(T) = 90{\text{ minutes}}$
Converting it into hours (therefore dividing it by $60$ , as \[1hr = 60mins\] )
Thus time of usage of heater\[ = 1.5{\text{ }}hrs\]
Thus energy consumed is given by $E = PT$
Substituting values,
\[E = 0.36 \times 1.5 = 0.54\;kWh\]
Now the total electricity units consumed by the heater are \[0.54\] kWh.
And cost of 1 unit of electricity \[ = 0.20\]
Cost to switch on heater for 90 minutes \[ = {\text{ }}\;0.54 \times 0.2\] \[ = 0.11\]
Hence, the right answer is (A) that is \[0.11\]
Note: The cost of using any electronic appliance can also be found by using a shortcut formula, that is
Cost \[ = {\text{ }}\dfrac{{\left( {V \times I \times T \times C} \right)}}{{1000}}\] where $V$ voltage in volts, $I$ is current in ampere, $T$ is time in hours and $C$ is cost of one electricity unit.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Assertion An electron is not deflected on passing through class 12 physics JEE_Main
A crystalline solid a Changes abruptly from solid to class 12 chemistry JEE_Main
The ratio of the diameters of certain air bubbles at class 11 physics JEE_Main