Answer
Verified
86.4k+ views
Hint The rate of the mass converted from liquid to the ice at the top of the central tube can be determined by using the heat of fusion formula and this formula is differentiated with respect to the time, then the rate of the mass converted from liquid to ice can be determined.
Useful formula
The heat of the fusion can be given by,
$Q = {L_F}m $
Where, $Q $ is the heat of the fusion, ${L_F} $ is the constant and $m $ is the mass.
Complete step by step answer
Given that,
The length of the tube is, $L = 0.12\,m $,
The temperature of the liquid is, ${T_r} = - {5^ \circ }\,C $.
Now,
The heat of the fusion can be given by,
$Q = {L_F}m $
By differentiating the above equation with respect to the time, then the above equation is written as,
$\dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
The above equation is also written as,
${P_{cond}} = \dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
By rearranging the terms in the above equation, then the above equation is written as,
$\dfrac{{{P_{cond}}}}{{{L_F}}} = \dfrac{{dm}}{{dt}} $
The value of the ${P_{cond}} = 16.7\,AW $ and the value of the ${L_F} = 3.33 \times {10^5}\,Jk{g^{ - 1}} $.
By substituting the both values in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = \dfrac{{16.7\,AW}}{{3.33 \times {{10}^5}\,Jk{g^{ - 1}}}} $
By dividing the terms in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = 5.02 \times {10^{ - 5}}\,kg{s^{ - 1}} $
Thus, the above equation shows the rate is mass converted from liquid to ice at the top of the central tube.
Note The rate of the mass of the liquid converted to the ice is directly proportional to the ${P_{cond}} $ and the rate of the mass of the liquid converted to the ice is inversely proportional to the ${L_F} $. As the ${P_{cond}} $ increases, the rate of the mass of the liquid converted to the ice also increases.
Useful formula
The heat of the fusion can be given by,
$Q = {L_F}m $
Where, $Q $ is the heat of the fusion, ${L_F} $ is the constant and $m $ is the mass.
Complete step by step answer
Given that,
The length of the tube is, $L = 0.12\,m $,
The temperature of the liquid is, ${T_r} = - {5^ \circ }\,C $.
Now,
The heat of the fusion can be given by,
$Q = {L_F}m $
By differentiating the above equation with respect to the time, then the above equation is written as,
$\dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
The above equation is also written as,
${P_{cond}} = \dfrac{{dQ}}{{dt}} = {L_F}\dfrac{{dm}}{{dt}} $
By rearranging the terms in the above equation, then the above equation is written as,
$\dfrac{{{P_{cond}}}}{{{L_F}}} = \dfrac{{dm}}{{dt}} $
The value of the ${P_{cond}} = 16.7\,AW $ and the value of the ${L_F} = 3.33 \times {10^5}\,Jk{g^{ - 1}} $.
By substituting the both values in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = \dfrac{{16.7\,AW}}{{3.33 \times {{10}^5}\,Jk{g^{ - 1}}}} $
By dividing the terms in the above equation, then the above equation is written as,
$\dfrac{{dm}}{{dt}} = 5.02 \times {10^{ - 5}}\,kg{s^{ - 1}} $
Thus, the above equation shows the rate is mass converted from liquid to ice at the top of the central tube.
Note The rate of the mass of the liquid converted to the ice is directly proportional to the ${P_{cond}} $ and the rate of the mass of the liquid converted to the ice is inversely proportional to the ${L_F} $. As the ${P_{cond}} $ increases, the rate of the mass of the liquid converted to the ice also increases.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main