
(i) What is the mass of sodium bromate and molarity of the solution necessary to prepare 85.4 mL of 0.072 N solution when the half-Sreaction is \[\text{Br}{{\text{O}}^{-}}\text{ + 6}{{\text{H}}^{+}}\text{ + 6}{{\text{e}}^{-}}\text{ }\to \text{ B}{{\text{r}}^{-}}\text{ + 3}{{\text{H}}_{2}}\text{O?}\]
(ii) What would be the mass as well as molarity if the half-cell reaction is
$\text{2BrO}_{3}^{-}\text{ + 12}{{\text{H}}^{+}}\text{ + 10}{{\text{e}}^{-}}\text{ }\to \text{ B}{{\text{r}}_{2}}\text{ + 6}{{\text{H}}_{2}}\text{O}$?
Answer
233.1k+ views
Hint: Normality is the ratio of the equivalent weight of the solute to the volume in litre. Whereas to find molarity can be calculated by the relationship of normality and molarity i.e. normality = product of n and molarity. Here, n is the total loss or gain of the electron.
Complete Step-by-Step Answer:
(i)- In the given question, we have to find the mass of the sodium bromate and the molarity of the solution with the given reaction.
- As we know that the molecular formula of sodium bromate is \[\begin{align}
& \text{NaBr}{{\text{O}}_{3}} \\
& \\
\end{align}\] so the molecular mass will be \[23\text{ + 79}\text{.9 + 3 }\times \text{ 16 }\sim \text{ 151g}\].
- Now, as we know that the relationship between normality and molarity is
$\text{Normality = n }\times \text{ Molarity}$
- So, here the value of n will be 6 because in the given reaction there are 6 electrons used.
\[\text{Br}{{\text{O}}^{-}}\text{ + 6}{{\text{H}}^{+}}\text{ + 6}{{\text{e}}^{-}}\text{ }\to \text{ B}{{\text{r}}^{-}}\text{ + 3}{{\text{H}}_{2}}\text{O}\]
- Now, by applying the above formula we will get the value of molarity i.e. $\dfrac{\text{Normality}}{\text{n}}\text{ }=\ \dfrac{0.672}{6}\text{ = 0}\text{.112M}$
- Now, the mass of sodium bromate will be calculated by the formula of molarity i.e.
$\text{Molarity = }\dfrac{\text{Mass }\times \text{ 1000}}{\text{Molar mass }\times \text{ volume in mL}}$
- Or it can also be written as
$\text{Mass = Molarity }\times \text{ molar mass }\times \text{ volume in ml }\times \text{ 1}{{\text{0}}^{3-}}$
$\text{Mass = 0}\text{.112 }\times \text{ 151 }\times \text{ 85}\text{.5 }\times \text{ 1}{{\text{0}}^{3-}}\text{ = 1}\text{.446g}$.
Therefore, molarity is 0.112M and mass of sodium bromate is 1.446g.
(ii)- Now, in this reaction 2 moles of sodium bromate is used which consume 10 electrons. So, one mole will consume 5 electrons.
$\text{2BrO}_{3}^{-}\text{ + 12}{{\text{H}}^{+}}\text{ + 10}{{\text{e}}^{-}}\text{ }\to \text{ B}{{\text{r}}_{2}}\text{ + 6}{{\text{H}}_{2}}\text{O}$
- To calculate the molarity of the solution we will apply the relationship between molarity and normality i.e.
$\text{Normality = n }\times \text{ Molarity}$
- As it is given that the value of normality is 0.672N and the value of n is 5 because 5 electrons participate in the reaction.
- So, the molarity is equal to:
$\dfrac{\text{Normality}}{\text{n}}\text{ }=\ \dfrac{0.672}{5}\text{ = 0}\text{.1344M}$
- Now, the mass of sodium bromate will be calculated by the formula of molarity i.e.
$\text{Molarity = }\dfrac{\text{Mass }\times \text{ 1000}}{\text{Molar mass }\times \text{ volume in mL}}$
- Or it can also be written as:
$\text{Mass = Molarity }\times \text{ molar mass }\times \text{ volume in ml }\times \text{ 1}{{\text{0}}^{3-}}$
$\text{Mass = 0}\text{.1344 }\times \text{ 151 }\times \text{ 85}\text{.5 }\times \text{ 1}{{\text{0}}^{3-}}\text{ = 1}\text{.735g}$.
Therefore, molarity is 0.1344M and mass of sodium bromate is 1.735g.
Note: The molarity and molality are different from each other. Molarity is dependent on the temperature and changes with change in the temperature whereas molality is independent of the temperature.
Complete Step-by-Step Answer:
(i)- In the given question, we have to find the mass of the sodium bromate and the molarity of the solution with the given reaction.
- As we know that the molecular formula of sodium bromate is \[\begin{align}
& \text{NaBr}{{\text{O}}_{3}} \\
& \\
\end{align}\] so the molecular mass will be \[23\text{ + 79}\text{.9 + 3 }\times \text{ 16 }\sim \text{ 151g}\].
- Now, as we know that the relationship between normality and molarity is
$\text{Normality = n }\times \text{ Molarity}$
- So, here the value of n will be 6 because in the given reaction there are 6 electrons used.
\[\text{Br}{{\text{O}}^{-}}\text{ + 6}{{\text{H}}^{+}}\text{ + 6}{{\text{e}}^{-}}\text{ }\to \text{ B}{{\text{r}}^{-}}\text{ + 3}{{\text{H}}_{2}}\text{O}\]
- Now, by applying the above formula we will get the value of molarity i.e. $\dfrac{\text{Normality}}{\text{n}}\text{ }=\ \dfrac{0.672}{6}\text{ = 0}\text{.112M}$
- Now, the mass of sodium bromate will be calculated by the formula of molarity i.e.
$\text{Molarity = }\dfrac{\text{Mass }\times \text{ 1000}}{\text{Molar mass }\times \text{ volume in mL}}$
- Or it can also be written as
$\text{Mass = Molarity }\times \text{ molar mass }\times \text{ volume in ml }\times \text{ 1}{{\text{0}}^{3-}}$
$\text{Mass = 0}\text{.112 }\times \text{ 151 }\times \text{ 85}\text{.5 }\times \text{ 1}{{\text{0}}^{3-}}\text{ = 1}\text{.446g}$.
Therefore, molarity is 0.112M and mass of sodium bromate is 1.446g.
(ii)- Now, in this reaction 2 moles of sodium bromate is used which consume 10 electrons. So, one mole will consume 5 electrons.
$\text{2BrO}_{3}^{-}\text{ + 12}{{\text{H}}^{+}}\text{ + 10}{{\text{e}}^{-}}\text{ }\to \text{ B}{{\text{r}}_{2}}\text{ + 6}{{\text{H}}_{2}}\text{O}$
- To calculate the molarity of the solution we will apply the relationship between molarity and normality i.e.
$\text{Normality = n }\times \text{ Molarity}$
- As it is given that the value of normality is 0.672N and the value of n is 5 because 5 electrons participate in the reaction.
- So, the molarity is equal to:
$\dfrac{\text{Normality}}{\text{n}}\text{ }=\ \dfrac{0.672}{5}\text{ = 0}\text{.1344M}$
- Now, the mass of sodium bromate will be calculated by the formula of molarity i.e.
$\text{Molarity = }\dfrac{\text{Mass }\times \text{ 1000}}{\text{Molar mass }\times \text{ volume in mL}}$
- Or it can also be written as:
$\text{Mass = Molarity }\times \text{ molar mass }\times \text{ volume in ml }\times \text{ 1}{{\text{0}}^{3-}}$
$\text{Mass = 0}\text{.1344 }\times \text{ 151 }\times \text{ 85}\text{.5 }\times \text{ 1}{{\text{0}}^{3-}}\text{ = 1}\text{.735g}$.
Therefore, molarity is 0.1344M and mass of sodium bromate is 1.735g.
Note: The molarity and molality are different from each other. Molarity is dependent on the temperature and changes with change in the temperature whereas molality is independent of the temperature.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

Other Pages
NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

An ideal gas is at pressure P and temperature T in class 11 chemistry JEE_Main

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding Collisions: Types and Examples for Students

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

