
Hydrogen readily combines with non-metals and thus it shows its
A. Electronegative character
B. Electropositive character
C. Both a and b
D. None of these
Answer
161.7k+ views
Hint: Hydrogen is a very special element due to its resemblance with many elements of different groups. Hydrogen resembles the halogens, alkali metals and carbon family of the periodic table. Due to its half filled orbital, it can gain or lose electrons to form a $H-$ or $H+$ ion. It is a strong reducing agent as it readily loses one electron and donates it to the other substance and thus helps in reduction by itself getting oxidised.
Complete Step by Step Answer:
Electropositive character of an element means an element can easily lose an electron to form an electropositive ion. For example, hydrogen acts as an electropositive ion when it reacts with highly electronegative ions such as elements of group $16$ or $17$ (non-metals).
$H(g)\longrightarrow H^{+}{+}e^{-}$
$H_{2}(g){+}Cl_{2}(g)\longrightarrow HCl(g)$
Electronegative character of an element means an element gains an electron to form an electronegative ion and complete its octet. For example, hydrogen acts as an electronegative ion when it combines with highly electropositive ions such as elements of group $1$ or $2$ (alkali and alkali earth metals).
$H(g){+}e^{-}\longrightarrow H^{-}$
$2Na(s){+}H_{2}(g)\longrightarrow 2NaH(s)$
Thus, when hydrogen readily reacts with non-metals it shows its electropositive character.
Hence, the correct answer is Option (B).
Note: Hydrogen forms polar covalent bonds due to them being much less electropositive than alkali metals. Covalent hydrides are formed as a result of reaction between hydrogen and nonmetals. For example, when sulphur reacts with hydrogen they form covalent sulphur hydride Hydrogen has low melting and boiling point due to which they have weak forces of attraction.
Complete Step by Step Answer:
Electropositive character of an element means an element can easily lose an electron to form an electropositive ion. For example, hydrogen acts as an electropositive ion when it reacts with highly electronegative ions such as elements of group $16$ or $17$ (non-metals).
$H(g)\longrightarrow H^{+}{+}e^{-}$
$H_{2}(g){+}Cl_{2}(g)\longrightarrow HCl(g)$
Electronegative character of an element means an element gains an electron to form an electronegative ion and complete its octet. For example, hydrogen acts as an electronegative ion when it combines with highly electropositive ions such as elements of group $1$ or $2$ (alkali and alkali earth metals).
$H(g){+}e^{-}\longrightarrow H^{-}$
$2Na(s){+}H_{2}(g)\longrightarrow 2NaH(s)$
Thus, when hydrogen readily reacts with non-metals it shows its electropositive character.
Hence, the correct answer is Option (B).
Note: Hydrogen forms polar covalent bonds due to them being much less electropositive than alkali metals. Covalent hydrides are formed as a result of reaction between hydrogen and nonmetals. For example, when sulphur reacts with hydrogen they form covalent sulphur hydride Hydrogen has low melting and boiling point due to which they have weak forces of attraction.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main Mock Test Series Class 12 Chemistry for FREE

Classification of Drugs Based on Pharmacological Effect, Drug Action

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
