
Give a test to differentiate ( Bromobenzene) \[Ph-Br\] and Benzyl bromide (\[PhC{{H}_{2}}Br\]).
$$\begin{array}{*{35}{l}}
\left( A \right)\text{ }aq.KOH,\text{ }Na \\
\left( B \right)\text{ }AgN{{O}_{3}} \\
\left( C \right)\text{ }KMn{{O}_{4}} \\
\left( D \right)\text{ }All\text{ }these \\
\end{array}$$
Answer
124.2k+ views
Hint: To differentiate between two compounds, they must react differently with a given reagent and produce a visible change like change in color or odour in order to differentiate one compound from the other. Understand the reagents given in the options as to what is their function and how they react.
Complete step by step answer:
We will now apply the reagent given in the options to the compounds mentioned in the question and see if there is any difference in their behavior towards the reagent.
Reagent 1: \[aq.KOH,\text{ }Na\]
$Ph-C{{H}_{2}}Br{{\xrightarrow{aq.KOH}}_{{}}}Ph-C{{H}_{2}}O{{H}_{{}}}{{\xrightarrow{Na}}_{{}}}Ph-CHO+{{H}_{2}}$
The evolution of Hydrogen gas confirms the above reaction to hold good.
$Ph-Br{{\xrightarrow[Na]{aq.KOH}}_{{}}}N{{o}_{{}}}reaction$
Hence Reagent 1 can be used to differentiate between the two compounds.
Reagent 2: \[AgN{{O}_{3}}\]
$\begin{align}
& Ph-C{{H}_{2}}Br{{\xrightarrow{AgN{{O}_{3}}}}_{{}}}Ph-C{{H}_{2}}N{{O}_{3}}+AgBr \\
& Ph-Br{{\xrightarrow{AgN{{O}_{3}}}}_{{}}}N{{o}_{{}}}\operatorname{Re}action \\
\end{align}$
The formation of Brown precipitate(\[AgBr\]) distinguishes the above two compounds.
Hence Reagent 2 can be used to differentiate between the two compounds.
Reagent 3: \[KMn{{O}_{4}}\]
$\begin{align}
& Ph-C{{H}_{2}}Br{{\xrightarrow{KMn{{O}_{4}}}}_{{}}}Ph-COOH \\
& Ph-Br{{\xrightarrow{KMn{{O}_{4}}}}_{{}}}N{{o}_{{}}}\operatorname{Re}action \\
\end{align}$
The formation of Benzoic acid shows the difference between the compounds.
Hence Reagent 3 can be used to differentiate between the two compounds
Since all the three reagents can be used to differentiate between the two given compounds,
The correct answer is option (D).
Note: Always read the options carefully. At times you will mark just one of the reagents as it gives the correct answer, however in this question marking only one reagent will not be right as all three of them are correct and hence the correct answer becomes all of these. All three reagents show no reaction with bromobenzene since it is less prone to nucleophilic substitution due to resonance stabilisation.
Complete step by step answer:
We will now apply the reagent given in the options to the compounds mentioned in the question and see if there is any difference in their behavior towards the reagent.
Reagent 1: \[aq.KOH,\text{ }Na\]
$Ph-C{{H}_{2}}Br{{\xrightarrow{aq.KOH}}_{{}}}Ph-C{{H}_{2}}O{{H}_{{}}}{{\xrightarrow{Na}}_{{}}}Ph-CHO+{{H}_{2}}$
The evolution of Hydrogen gas confirms the above reaction to hold good.
$Ph-Br{{\xrightarrow[Na]{aq.KOH}}_{{}}}N{{o}_{{}}}reaction$
Hence Reagent 1 can be used to differentiate between the two compounds.
Reagent 2: \[AgN{{O}_{3}}\]
$\begin{align}
& Ph-C{{H}_{2}}Br{{\xrightarrow{AgN{{O}_{3}}}}_{{}}}Ph-C{{H}_{2}}N{{O}_{3}}+AgBr \\
& Ph-Br{{\xrightarrow{AgN{{O}_{3}}}}_{{}}}N{{o}_{{}}}\operatorname{Re}action \\
\end{align}$
The formation of Brown precipitate(\[AgBr\]) distinguishes the above two compounds.
Hence Reagent 2 can be used to differentiate between the two compounds.
Reagent 3: \[KMn{{O}_{4}}\]
$\begin{align}
& Ph-C{{H}_{2}}Br{{\xrightarrow{KMn{{O}_{4}}}}_{{}}}Ph-COOH \\
& Ph-Br{{\xrightarrow{KMn{{O}_{4}}}}_{{}}}N{{o}_{{}}}\operatorname{Re}action \\
\end{align}$
The formation of Benzoic acid shows the difference between the compounds.
Hence Reagent 3 can be used to differentiate between the two compounds
Since all the three reagents can be used to differentiate between the two given compounds,
The correct answer is option (D).
Note: Always read the options carefully. At times you will mark just one of the reagents as it gives the correct answer, however in this question marking only one reagent will not be right as all three of them are correct and hence the correct answer becomes all of these. All three reagents show no reaction with bromobenzene since it is less prone to nucleophilic substitution due to resonance stabilisation.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
