
Gaseous benzene reacts with hydrogen gas in the presence of a nickel catalyst to form gaseous cyclohexane according to the reaction,
\[{{C}_{6}}{{H}_{6}}(g)+3{{H}_{2}}(g)\to {{C}_{6}}{{H}_{12}}(g)\]
A mixture of \[{{C}_{6}}{{H}_{6}}\] and excess \[{{H}_{2}}\] has a pressure of 60mm of Hg in an unknown volume. After the gas had been passed over a nickel catalyst and all the benzene converted to cyclohexane, the pressure of the gas was 30mm of Hg in the same volume at the same temperature. The fraction of \[{{C}_{6}}{{H}_{6}}\] (by volume) present in the original volume is:
(a)- \[\dfrac{1}{3}\]
(b)- \[\dfrac{1}{4}\]
(c)- \[\dfrac{1}{5}\]
(d)- \[\dfrac{1}{6}\]
Answer
126.9k+ views
Hint: The fraction can be calculated by taking 2 equations, with initial and final process pressure. Add the 2 equations and divide it with original pressure.
Complete step by step answer:
Let us first write down the equation given in the question:
\[{{C}_{6}}{{H}_{6}}(g)+3{{H}_{2}}(g)\to {{C}_{6}}{{H}_{12}}(g)\]
For the first condition,
Let the initial pressure of \[{{C}_{6}}{{H}_{6}}(g)\] is \[{{p}_{1}}mm\] and for \[{{H}_{2}}(g)\] is \[{{p}_{2}}mm\],
In the question, it is given that the mixture has a pressure of 60mm of Hg.
Therefore, the equation is-
\[{{p}_{1}}+{{p}_{2}}=60mm\text{ }of\text{ }Hg\] - Equation 1
For the second condition,
After heating the final pressure of \[{{C}_{6}}{{H}_{6}}(g)=0\] (because all the benzene has reacted during heating)
For \[{{H}_{2}}(g)={{p}_{2}}-3{{p}_{1}}\]
Because the initial pressure of benzene is \[{{p}_{1}}\] , hydrogen is \[{{p}_{2}}\] , and cyclohexane is 0.
Final pressure of benzene is 0, hydrogen is\[{{p}_{2}}-3{{p}_{1}}\] , and cyclohexane is \[{{p}_{1}}\]
So, the total pressure is-
\[{{p}_{2}}-3{{p}_{1}}+{{p}_{1}}=30mm\text{ }of\text{ }Hg\]
\[{{p}_{2}}-2{{p}_{1}}=30mm\text{ }of\text{ }Hg\]--Equation 2
On solving Equation 1 and 2, we get \[{{p}_{1}}=10mm\text{ and }{{p}_{2}}=50mm\]
So, the fraction of \[{{C}_{6}}{{H}_{6}}\] by volume is = mole fraction,
Hence, the fraction of pressure = \[\dfrac{{{p}_{1}}}{{{p}_{1}}+{{p}_{2}}}=\dfrac{10}{60}=\dfrac{1}{6}\]
So, the correct answer is option (d) \[\dfrac{1}{6}\].
Note: The mole fraction of the initial and final pressure should be taken, and not the fraction of \[{{p}_{1}}\text{ }and\text{ }{{p}_{2}}\].
So, you may get confused between option (c) and option (d).
Complete step by step answer:
Let us first write down the equation given in the question:
\[{{C}_{6}}{{H}_{6}}(g)+3{{H}_{2}}(g)\to {{C}_{6}}{{H}_{12}}(g)\]
For the first condition,
Let the initial pressure of \[{{C}_{6}}{{H}_{6}}(g)\] is \[{{p}_{1}}mm\] and for \[{{H}_{2}}(g)\] is \[{{p}_{2}}mm\],
In the question, it is given that the mixture has a pressure of 60mm of Hg.
Therefore, the equation is-
\[{{p}_{1}}+{{p}_{2}}=60mm\text{ }of\text{ }Hg\] - Equation 1
For the second condition,
After heating the final pressure of \[{{C}_{6}}{{H}_{6}}(g)=0\] (because all the benzene has reacted during heating)
For \[{{H}_{2}}(g)={{p}_{2}}-3{{p}_{1}}\]
Because the initial pressure of benzene is \[{{p}_{1}}\] , hydrogen is \[{{p}_{2}}\] , and cyclohexane is 0.
Final pressure of benzene is 0, hydrogen is\[{{p}_{2}}-3{{p}_{1}}\] , and cyclohexane is \[{{p}_{1}}\]
So, the total pressure is-
\[{{p}_{2}}-3{{p}_{1}}+{{p}_{1}}=30mm\text{ }of\text{ }Hg\]
\[{{p}_{2}}-2{{p}_{1}}=30mm\text{ }of\text{ }Hg\]--Equation 2
On solving Equation 1 and 2, we get \[{{p}_{1}}=10mm\text{ and }{{p}_{2}}=50mm\]
So, the fraction of \[{{C}_{6}}{{H}_{6}}\] by volume is = mole fraction,
Hence, the fraction of pressure = \[\dfrac{{{p}_{1}}}{{{p}_{1}}+{{p}_{2}}}=\dfrac{10}{60}=\dfrac{1}{6}\]
So, the correct answer is option (d) \[\dfrac{1}{6}\].
Note: The mole fraction of the initial and final pressure should be taken, and not the fraction of \[{{p}_{1}}\text{ }and\text{ }{{p}_{2}}\].
So, you may get confused between option (c) and option (d).
Recently Updated Pages
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

Know The Difference Between Fluid And Liquid

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
