
Fusion of $Mn{{O}_{2}}$, with $KOH$ in presence of ${{O}_{2}}$ produces a salt W. Alkaline solution of W upon electrolytic oxidation yields another salt X. The manganese containing ions present in W and X, respectively are Y and Z. Correct statement(s) is (are)
This question has multiple correct options
(A) In both Y and Z, π-bonding occurs between p-orbitals of oxygen and d-orbitals of manganese
(B) Both Y and Z are coloured and have tetrahedral shape
(C) In aqueous acidic solution, Y undergoes disproportionation reaction to give Z and $Mn{{O}_{2}}$
(D) Y is diamagnetic in nature while Z is paramagnetic
Answer
218.1k+ views
Hint: In the given question W is potassium manganate and X is potassium permanganate. The Potassium manganate is a salt of manganic acid and the permanganate is that of permanganic acid. In the permanganate salt (X) the oxidation state of manganese is +7 and in manganate salt it is +6.
Complete step by step solution:
-The reaction $Mn{{O}_{2}}$, with KOH in presence of ${{O}_{2}}$ produces can be represented as follows
\[Mn{{O}_{2}}\xrightarrow[{{O}_{2}}]{KOH}MnO_{4}^{2-}\]
That is when manganese dioxide ($Mn{{O}_{2}}$) is treated with potassium hydroxide in presence of oxygen, manganate salt (W) is being formed. The ion present in this W is $M{{n}^{+6}}$ .That is the ion is in +6 oxidation state.
- When an Alkaline solution of W is subjected to electrolytic oxidation the following reaction occurs
\[MnO_{4}^{2-}\xrightarrow[Oxidation]{Electrolytic}MnO_{4}^{-}\]
That is when manganate salt (W) undergoes electrolytic oxidation, permanganate salt is being formed and the ion present in X is $M{{n}^{+7}}$. That is the ion is in +7 oxidation state. As we know, in both Y and Z, π-bonding occurs between p-orbitals of oxygen and d-orbitals of manganese and hence option (A) is correct.
- Both the $MnO_{4}^{2-}$ and $MnO_{4}^{-}$ are coloured.The permanganate ion is purple coloured and the manganate ion is green in colour. They both have tetrahedral geometry. Thus option (B) is also correct.
- In acidic medium, $MnO_{4}^{2-}$ undergoes disproportionation reaction and the reaction can be written as follows
\[MnO_{4}^{2-}\xrightarrow[medium]{Acidic}Mn{{O}_{2}}+MnO_{4}^{-}\]
As we can see the products formed are Z ($MnO_{4}^{-}$) and$Mn{{O}_{2}}$.Hence, option (C) is also correct.
- In $MnO_{4}^{2-}$ an unpaired electron is present and hence it (Y) is paramagnetic in nature and in $MnO_{4}^{-}$ the electrons are paired in the outermost configuration and hence Z is diamagnetic. Thus option (D) is incorrect.
Therefore the correct options are (A), (B) and (C).
Note: It should be noted that, both the permanganates and manganates are powerful oxidizing agents. As we mentioned, permanganate in the metal is in higher oxidation state than in the manganate. Therefore the permanganate is expected to be a more powerful oxidizing agent than the manganate.
Complete step by step solution:
-The reaction $Mn{{O}_{2}}$, with KOH in presence of ${{O}_{2}}$ produces can be represented as follows
\[Mn{{O}_{2}}\xrightarrow[{{O}_{2}}]{KOH}MnO_{4}^{2-}\]
That is when manganese dioxide ($Mn{{O}_{2}}$) is treated with potassium hydroxide in presence of oxygen, manganate salt (W) is being formed. The ion present in this W is $M{{n}^{+6}}$ .That is the ion is in +6 oxidation state.
- When an Alkaline solution of W is subjected to electrolytic oxidation the following reaction occurs
\[MnO_{4}^{2-}\xrightarrow[Oxidation]{Electrolytic}MnO_{4}^{-}\]
That is when manganate salt (W) undergoes electrolytic oxidation, permanganate salt is being formed and the ion present in X is $M{{n}^{+7}}$. That is the ion is in +7 oxidation state. As we know, in both Y and Z, π-bonding occurs between p-orbitals of oxygen and d-orbitals of manganese and hence option (A) is correct.
- Both the $MnO_{4}^{2-}$ and $MnO_{4}^{-}$ are coloured.The permanganate ion is purple coloured and the manganate ion is green in colour. They both have tetrahedral geometry. Thus option (B) is also correct.
- In acidic medium, $MnO_{4}^{2-}$ undergoes disproportionation reaction and the reaction can be written as follows
\[MnO_{4}^{2-}\xrightarrow[medium]{Acidic}Mn{{O}_{2}}+MnO_{4}^{-}\]
As we can see the products formed are Z ($MnO_{4}^{-}$) and$Mn{{O}_{2}}$.Hence, option (C) is also correct.
- In $MnO_{4}^{2-}$ an unpaired electron is present and hence it (Y) is paramagnetic in nature and in $MnO_{4}^{-}$ the electrons are paired in the outermost configuration and hence Z is diamagnetic. Thus option (D) is incorrect.
Therefore the correct options are (A), (B) and (C).
Note: It should be noted that, both the permanganates and manganates are powerful oxidizing agents. As we mentioned, permanganate in the metal is in higher oxidation state than in the manganate. Therefore the permanganate is expected to be a more powerful oxidizing agent than the manganate.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

