
What fraction of a radioactive material will get disintegrated in a period of two half-lives?
A. whole
B. half
C. one-fourth
D. three-fourth
Answer
232.8k+ views
Hint:In the given question, we have to determine the fraction of a radioactive material if it will disintegrate in a period of two half-lives. We will use the following formula of the amount of substance decayed for this. After that, we will find the disintegrated part.
Formula used:
The amount of substance that will decay is given by
\[\left( {\dfrac{N}{{{N_0}}}} \right) = {\left( {\dfrac{1}{2}} \right)^n}\]
Here, \[{N_0}\] is the amount of substance that will initially decay and \[N\] is the quantity that still remains and its decay has not taken place after a time \[t\].
Complete step by step solution:
We know that the amount of substance that will decay is,
\[\left( {\dfrac{N}{{{N_0}}}} \right) = {\left( {\dfrac{1}{2}} \right)^n} \\ \]
Here, \[n = 2\]
This gives,
\[\left( {\dfrac{N}{{{N_0}}}} \right) = {\left( {\dfrac{1}{2}} \right)^2} \\ \]
By simplifying, we get
\[\left( {\dfrac{N}{{{N_0}}}} \right) = \left( {\dfrac{1}{4}} \right) \\ \]
Hence, the disintegrated part is given by
\[1 - \left( {\dfrac{N}{{{N_0}}}} \right) = 1 - \dfrac{1}{4} \\ \]
By simplifying, we get
\[1 - \left( {\dfrac{N}{{{N_0}}}} \right) = \dfrac{3}{4}\]
Thus, three-fourths of a radioactive material will disintegrate in a period of two half-lives.
Therefore, the correct option is D.
Additional Information: An atom's nucleus shows radioactivity as a result of nuclear instability. Henry Becquerel made this discovery in 1896. The phenomenon of radioactivity takes place when an unstable atom's nucleus releases radiation to lose energy.
Note:Many students make mistakes in writing the formula that still remains and its decay has not taken place after a time \[t\]. Also, the value of the disintegrated part totally depends on the ratio \[\left( {\dfrac{N}{{{N_0}}}} \right)\]. If they make mistakes here, then the final result will be wrong. So, it is necessary to do the calculations carefully.
Formula used:
The amount of substance that will decay is given by
\[\left( {\dfrac{N}{{{N_0}}}} \right) = {\left( {\dfrac{1}{2}} \right)^n}\]
Here, \[{N_0}\] is the amount of substance that will initially decay and \[N\] is the quantity that still remains and its decay has not taken place after a time \[t\].
Complete step by step solution:
We know that the amount of substance that will decay is,
\[\left( {\dfrac{N}{{{N_0}}}} \right) = {\left( {\dfrac{1}{2}} \right)^n} \\ \]
Here, \[n = 2\]
This gives,
\[\left( {\dfrac{N}{{{N_0}}}} \right) = {\left( {\dfrac{1}{2}} \right)^2} \\ \]
By simplifying, we get
\[\left( {\dfrac{N}{{{N_0}}}} \right) = \left( {\dfrac{1}{4}} \right) \\ \]
Hence, the disintegrated part is given by
\[1 - \left( {\dfrac{N}{{{N_0}}}} \right) = 1 - \dfrac{1}{4} \\ \]
By simplifying, we get
\[1 - \left( {\dfrac{N}{{{N_0}}}} \right) = \dfrac{3}{4}\]
Thus, three-fourths of a radioactive material will disintegrate in a period of two half-lives.
Therefore, the correct option is D.
Additional Information: An atom's nucleus shows radioactivity as a result of nuclear instability. Henry Becquerel made this discovery in 1896. The phenomenon of radioactivity takes place when an unstable atom's nucleus releases radiation to lose energy.
Note:Many students make mistakes in writing the formula that still remains and its decay has not taken place after a time \[t\]. Also, the value of the disintegrated part totally depends on the ratio \[\left( {\dfrac{N}{{{N_0}}}} \right)\]. If they make mistakes here, then the final result will be wrong. So, it is necessary to do the calculations carefully.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

