
Four condensers having capacities $2pF$, $3pF$,$4pF$and $6pF$are connected in series. The equivalent capacitance of the combination is
(A) $8pF$
(B) $0.8pF$
(C) $1.8pF$
(D) $0.4pF$
Answer
232.8k+ views
Hint: We will be using the concept that when the same potential difference is applied across capacitors which are connected in series, then each capacitor has the same charge and the applied potential is equal to the sum of potential differences on each capacitor.
Formula Used: $V = Q/C$
Complete step by step answer
let us say potential difference across $2pF$be ${V_1}$
potential difference across $3pF$ be ${V_2}$
potential difference across $4pF$ be ${V_3}$
potential difference across $6pF$ be ${V_4}$
we know that $V = \dfrac{q}{C}$, where q is the charge and C is the capacitance
total potential V is sum of all these four potentials $V = {V_1} + {V_2} + {V_3} + {V_4}$
\[ \Rightarrow V = q\left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
\[ \Rightarrow \dfrac{q}{V} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right) \Rightarrow 1/{C_{eq}} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
On substituting the values of different capacitance,
\[\dfrac{1}{{{C_{eq}}}} = \left( {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{6}} \right)\]
\[ \Rightarrow {C_{eq}} = 0.8pF\]
The equivalent capacitance of the combination is \[0.8pF\]
Correct answer is B. \[0.8pF\]
Additional information
Capacitor is nothing but a pair of two conductors which can be of any shape are close to each other and have opposite charges.Capacitance is the ratio of charge on a capacitor plate to the potential difference between the plates. Capacitance and charge are proportional that is more the charge, greater is the capacitance.
Note
There are few points to consider about capacitors in series like we need to observe the charge shifting from one to other capacitor in a series combination, it can move in one direction only, if not then there is no series combination. Another point is the battery attached in the circuit can produce charge on only that capacitor which is connected directly with the battery. Charges on other capacitors are due to shifting of present charge. The charge can only be redistributed.
Formula Used: $V = Q/C$
Complete step by step answer
let us say potential difference across $2pF$be ${V_1}$
potential difference across $3pF$ be ${V_2}$
potential difference across $4pF$ be ${V_3}$
potential difference across $6pF$ be ${V_4}$
we know that $V = \dfrac{q}{C}$, where q is the charge and C is the capacitance
total potential V is sum of all these four potentials $V = {V_1} + {V_2} + {V_3} + {V_4}$
\[ \Rightarrow V = q\left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
\[ \Rightarrow \dfrac{q}{V} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right) \Rightarrow 1/{C_{eq}} = \left( {\dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}} + \dfrac{1}{{{C_3}}} + \dfrac{1}{{{C_4}}}} \right)\]
On substituting the values of different capacitance,
\[\dfrac{1}{{{C_{eq}}}} = \left( {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{6}} \right)\]
\[ \Rightarrow {C_{eq}} = 0.8pF\]
The equivalent capacitance of the combination is \[0.8pF\]
Correct answer is B. \[0.8pF\]
Additional information
Capacitor is nothing but a pair of two conductors which can be of any shape are close to each other and have opposite charges.Capacitance is the ratio of charge on a capacitor plate to the potential difference between the plates. Capacitance and charge are proportional that is more the charge, greater is the capacitance.
Note
There are few points to consider about capacitors in series like we need to observe the charge shifting from one to other capacitor in a series combination, it can move in one direction only, if not then there is no series combination. Another point is the battery attached in the circuit can produce charge on only that capacitor which is connected directly with the battery. Charges on other capacitors are due to shifting of present charge. The charge can only be redistributed.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

