
Forty-one forks are so arranged that each produced 5 beats per second when sounded with its near fork. If the frequency of last fork is double the frequency of first fork, then the frequencies of the first and last fork, respectively are:
A. \[200,400\]
B. $205,410$
C. $195,390$
D. $100,200$
Answer
233.1k+ views
Hint: When two sound waves of different frequency approach towards an observer, an alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

