Forty-one forks are so arranged that each produced 5 beats per second when sounded with its near fork. If the frequency of last fork is double the frequency of first fork, then the frequencies of the first and last fork, respectively are:
A. \[200,400\]
B. $205,410$
C. $195,390$
D. $100,200$
Answer
Verified
117.6k+ views
Hint: When two sound waves of different frequency approach towards an observer, an alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression. Find the first and last term of the A.P.
Complete step by step answer:
Let us first discuss how beats are produced.
When two sound waves of different frequency approach towards an observer, alternatively soft and loud sound is heard due to the alternating constructive and destructive interference of the sound wave. This phenomenon is known as "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
According to the question, each fork produces 5 beats per second so each frequency will be 5 more than the preceding one which forms an arithmetic progression.
Let the frequency of the first fork be $x$ which is the first term of the A.P. The common difference of the A.P. will be equal to $5$ .
The A.P. is $x,x + 5,x + 10,.........,{x_{41}}$ where ${x_{41}}$, the last term of A.P. and the frequency of the last fork.
We know that the last term will be written as
${x_{41}} = x + \left( {41 - 1} \right) \times 5$
On simplifying we have
${x_{41}} = x + 200$ ……(i)
Given in the question that the frequency of last fork is double the frequency of first fork i.e.
${x_{41}} = 2x$
Substituting this value in equation (i) we have
$2x = x + 200$
On simplifying we have
$x = 200$
Therefore, ${x_{41}} = 2x = 2 \times 200 = 400$
So, the frequency of the first fork is $200$ and that of the last fork is $400$ .
Hence, option A is correct.
Note: Beats has numerous applications in our daily life such as they are used to tune musical instruments such as guitar and violin. They are also used in the sonometer experiment to adjust the vibrating length between the two bridges.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids