
What is the force exerted by a photon of intensity ${{1}}{{.4 kW}}{{{m}}^{{{ - 2}}}}$ if it falls on perfect absorber of radius ${{2 m}}$?
$A) {{2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}} \\
B) {{1}}{{{0}}^{{8}}}{{ N}} \\
C) {{8}}{{.35 \times 1}}{{{0}}^{{4}}}{{ N}} \\
D) {{8}}{{.8 \times 1}}{{{0}}^{{{ - 8}}}}{{ N}}$
Answer
219.3k+ views
Hint: For finding out the force exerted by any particle, recall the formulas that include intensity or radius ( or area ) or both. As there is no such direct relation. Now, try to find out other formulas where force can be easily determined. For sure there will be some indirect relation which on further simplification lands on the required quantity.
Complete step by step solution:
Given: Intensity of photon, ${{I = 1}}{{.4 kW}}{{{m}}^{{{ - 2}}}} = 1.4{{ \times 1}}{{{0}}^{{3}}}{{ W}}{{{m}}^{{{ - 2}}}}$
Radius of photon, ${{r = 2 m}}$
As there is no direct relation of finding out force exerted by the photon with given quantities. So, we need to first calculate the pressure exerted by the photon. Once the value of exerted pressure is known then we will proceed further using formula, ${{force = pressure \times area}}$. Since the value of radius is given in the question, we can easily determine the value of the area of the photon.
Pressure exerted by a photon, ${{P = }}\dfrac{{{{\text{Intensity} (I)}}}}{{{{\text{velocity of light} (c)}}}}$
We know that velocity of light in vacuum, ${{c = 3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$
Substituting the quantities in above formula, we get
$\Rightarrow {{P = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}\dfrac{{{N}}}{{{{{m}}^{{2}}}}}$
Now, force exerted by a photon is given by the formula
$\Rightarrow {{F = P \times A}}$
Where ${{P = }}$pressure and ${{A = }}$area
Area, ${{A = 4\pi }}{{{r}}^{{2}}}{{ = 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ }}{{{m}}^{{2}}}$
Now substituting the value of area and pressure in above formula, we get
$\Rightarrow {{F = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}{{ \times 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ = 2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$
Therefore, force exerted by a photon is ${{2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$.
Thus, option (A) is the correct choice.
Note: A photon is a massless and stable elementary particle that doesn’t have any charge. Since the photons are a massless quantity so, the photons always moves with the velocity of light in vacuum i.e. ${{3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$. Keep in mind that before substituting the required quantities in formula make sure that all the quantities are in their SI unit.
Complete step by step solution:
Given: Intensity of photon, ${{I = 1}}{{.4 kW}}{{{m}}^{{{ - 2}}}} = 1.4{{ \times 1}}{{{0}}^{{3}}}{{ W}}{{{m}}^{{{ - 2}}}}$
Radius of photon, ${{r = 2 m}}$
As there is no direct relation of finding out force exerted by the photon with given quantities. So, we need to first calculate the pressure exerted by the photon. Once the value of exerted pressure is known then we will proceed further using formula, ${{force = pressure \times area}}$. Since the value of radius is given in the question, we can easily determine the value of the area of the photon.
Pressure exerted by a photon, ${{P = }}\dfrac{{{{\text{Intensity} (I)}}}}{{{{\text{velocity of light} (c)}}}}$
We know that velocity of light in vacuum, ${{c = 3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$
Substituting the quantities in above formula, we get
$\Rightarrow {{P = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}\dfrac{{{N}}}{{{{{m}}^{{2}}}}}$
Now, force exerted by a photon is given by the formula
$\Rightarrow {{F = P \times A}}$
Where ${{P = }}$pressure and ${{A = }}$area
Area, ${{A = 4\pi }}{{{r}}^{{2}}}{{ = 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ }}{{{m}}^{{2}}}$
Now substituting the value of area and pressure in above formula, we get
$\Rightarrow {{F = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}{{ \times 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ = 2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$
Therefore, force exerted by a photon is ${{2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$.
Thus, option (A) is the correct choice.
Note: A photon is a massless and stable elementary particle that doesn’t have any charge. Since the photons are a massless quantity so, the photons always moves with the velocity of light in vacuum i.e. ${{3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$. Keep in mind that before substituting the required quantities in formula make sure that all the quantities are in their SI unit.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

