
What is the force exerted by a photon of intensity ${{1}}{{.4 kW}}{{{m}}^{{{ - 2}}}}$ if it falls on perfect absorber of radius ${{2 m}}$?
$A) {{2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}} \\
B) {{1}}{{{0}}^{{8}}}{{ N}} \\
C) {{8}}{{.35 \times 1}}{{{0}}^{{4}}}{{ N}} \\
D) {{8}}{{.8 \times 1}}{{{0}}^{{{ - 8}}}}{{ N}}$
Answer
218.4k+ views
Hint: For finding out the force exerted by any particle, recall the formulas that include intensity or radius ( or area ) or both. As there is no such direct relation. Now, try to find out other formulas where force can be easily determined. For sure there will be some indirect relation which on further simplification lands on the required quantity.
Complete step by step solution:
Given: Intensity of photon, ${{I = 1}}{{.4 kW}}{{{m}}^{{{ - 2}}}} = 1.4{{ \times 1}}{{{0}}^{{3}}}{{ W}}{{{m}}^{{{ - 2}}}}$
Radius of photon, ${{r = 2 m}}$
As there is no direct relation of finding out force exerted by the photon with given quantities. So, we need to first calculate the pressure exerted by the photon. Once the value of exerted pressure is known then we will proceed further using formula, ${{force = pressure \times area}}$. Since the value of radius is given in the question, we can easily determine the value of the area of the photon.
Pressure exerted by a photon, ${{P = }}\dfrac{{{{\text{Intensity} (I)}}}}{{{{\text{velocity of light} (c)}}}}$
We know that velocity of light in vacuum, ${{c = 3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$
Substituting the quantities in above formula, we get
$\Rightarrow {{P = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}\dfrac{{{N}}}{{{{{m}}^{{2}}}}}$
Now, force exerted by a photon is given by the formula
$\Rightarrow {{F = P \times A}}$
Where ${{P = }}$pressure and ${{A = }}$area
Area, ${{A = 4\pi }}{{{r}}^{{2}}}{{ = 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ }}{{{m}}^{{2}}}$
Now substituting the value of area and pressure in above formula, we get
$\Rightarrow {{F = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}{{ \times 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ = 2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$
Therefore, force exerted by a photon is ${{2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$.
Thus, option (A) is the correct choice.
Note: A photon is a massless and stable elementary particle that doesn’t have any charge. Since the photons are a massless quantity so, the photons always moves with the velocity of light in vacuum i.e. ${{3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$. Keep in mind that before substituting the required quantities in formula make sure that all the quantities are in their SI unit.
Complete step by step solution:
Given: Intensity of photon, ${{I = 1}}{{.4 kW}}{{{m}}^{{{ - 2}}}} = 1.4{{ \times 1}}{{{0}}^{{3}}}{{ W}}{{{m}}^{{{ - 2}}}}$
Radius of photon, ${{r = 2 m}}$
As there is no direct relation of finding out force exerted by the photon with given quantities. So, we need to first calculate the pressure exerted by the photon. Once the value of exerted pressure is known then we will proceed further using formula, ${{force = pressure \times area}}$. Since the value of radius is given in the question, we can easily determine the value of the area of the photon.
Pressure exerted by a photon, ${{P = }}\dfrac{{{{\text{Intensity} (I)}}}}{{{{\text{velocity of light} (c)}}}}$
We know that velocity of light in vacuum, ${{c = 3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$
Substituting the quantities in above formula, we get
$\Rightarrow {{P = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}\dfrac{{{N}}}{{{{{m}}^{{2}}}}}$
Now, force exerted by a photon is given by the formula
$\Rightarrow {{F = P \times A}}$
Where ${{P = }}$pressure and ${{A = }}$area
Area, ${{A = 4\pi }}{{{r}}^{{2}}}{{ = 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ }}{{{m}}^{{2}}}$
Now substituting the value of area and pressure in above formula, we get
$\Rightarrow {{F = }}\dfrac{{{{1}}{{.4 \times 1}}{{{0}}^{{3}}}}}{{{{3 \times 1}}{{{0}}^{{8}}}}}{{ \times 4 \times }}\dfrac{{{{22}}}}{{{7}}}{{ \times }}{{{2}}^{{2}}}{{ = 2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$
Therefore, force exerted by a photon is ${{2}}{{.35 \times 1}}{{{0}}^{{{ - 4}}}}{{ N}}$.
Thus, option (A) is the correct choice.
Note: A photon is a massless and stable elementary particle that doesn’t have any charge. Since the photons are a massless quantity so, the photons always moves with the velocity of light in vacuum i.e. ${{3 \times 1}}{{{0}}^{{8}}}{{ m/s}}$. Keep in mind that before substituting the required quantities in formula make sure that all the quantities are in their SI unit.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

