
For which reaction from the following, $\Delta S$ will be maximum?
(A) $Ca(s)+\dfrac{1}{2}{{O}_{2}}(g)\to CaO(s)$
(B) $CaC{{O}_{3}}(s)\to CaO(s)+C{{O}_{2}}(g)$
(C) $C(s)+{{O}_{2}}(g)\to C{{O}_{2}}(g)$
(D) ${{N}_{2}}(g)+{{O}_{2}}(g)\to 2NO(g)$
Answer
146.4k+ views
Hint: $\Delta S$ tells the change in the randomness of a system. Randomness increases as the number of moles increases. So we have to calculate the reaction in which the number of moles has increased.
Complete step by step solution:
$\Delta S$ is known as a change in entropy. The change in entropy is equal to the change in the randomness of the system. The randomness of the system is due to the molecules present in the system. As the number of molecules or the number of moles increases, the randomness increases. As a result, the change in entropy $\Delta S$ increases.
So, we have to calculate the $\Delta n$ (change in a number of moles) of the reaction. Change in the number of moles can be calculated by subtracting the number of moles of reactant from the number of moles product. Or we can say that,
$\Delta n={{n}_{P}}-{{n}_{R}}$
(a)- $Ca(s)+\dfrac{1}{2}{{O}_{2}}(g)\to CaO(s)$
In this reaction, the number of moles in the product is 0 and the number of moles in the reactant is 1/2.
$\Delta n={{n}_{P}}-{{n}_{R}}=0-\dfrac{1}{2}=-\dfrac{1}{2}$
So, $\Delta n$for this reaction is -1.
(b)- $CaC{{O}_{3}}(s)\to CaO(s)+C{{O}_{2}}(g)$
In this reaction, the number of moles in the product is 1 and the number of moles in the reactant is 0.
$\Delta n={{n}_{P}}-{{n}_{R}}=1-0=1$
So, $\Delta n$for this reaction is 1.
(c)- $C(s)+{{O}_{2}}(g)\to C{{O}_{2}}(g)$
In this reaction, the number of moles in the product is 1 and the number of moles in the reactant is 1.
$\Delta n={{n}_{P}}-{{n}_{R}}=1-1=0$
So, $\Delta n$for this reaction is 0.
(d)- ${{N}_{2}}(g)+{{O}_{2}}(g)\to 2NO(g)$
In this reaction, the number of moles in the product is 1 and the number of moles in the reactant is 2.
$\Delta n={{n}_{P}}-{{n}_{R}}=1-2=-1$
So, $\Delta n$for this reaction is -1.
So, the $\Delta n$is maximum for reaction, $CaC{{O}_{3}}(s)\to CaO(s)+C{{O}_{2}}(g)$, so this reaction will have maximum $\Delta S$.
The correct answer is an option (b)- $CaC{{O}_{3}}(s)\to CaO(s)+C{{O}_{2}}(g)$.
Note: For calculating the change in the number of moles, only the moles of gases are considered. The moles of solids and liquids are not considered because an increase in randomness has a negligible effect.
Complete step by step solution:
$\Delta S$ is known as a change in entropy. The change in entropy is equal to the change in the randomness of the system. The randomness of the system is due to the molecules present in the system. As the number of molecules or the number of moles increases, the randomness increases. As a result, the change in entropy $\Delta S$ increases.
So, we have to calculate the $\Delta n$ (change in a number of moles) of the reaction. Change in the number of moles can be calculated by subtracting the number of moles of reactant from the number of moles product. Or we can say that,
$\Delta n={{n}_{P}}-{{n}_{R}}$
(a)- $Ca(s)+\dfrac{1}{2}{{O}_{2}}(g)\to CaO(s)$
In this reaction, the number of moles in the product is 0 and the number of moles in the reactant is 1/2.
$\Delta n={{n}_{P}}-{{n}_{R}}=0-\dfrac{1}{2}=-\dfrac{1}{2}$
So, $\Delta n$for this reaction is -1.
(b)- $CaC{{O}_{3}}(s)\to CaO(s)+C{{O}_{2}}(g)$
In this reaction, the number of moles in the product is 1 and the number of moles in the reactant is 0.
$\Delta n={{n}_{P}}-{{n}_{R}}=1-0=1$
So, $\Delta n$for this reaction is 1.
(c)- $C(s)+{{O}_{2}}(g)\to C{{O}_{2}}(g)$
In this reaction, the number of moles in the product is 1 and the number of moles in the reactant is 1.
$\Delta n={{n}_{P}}-{{n}_{R}}=1-1=0$
So, $\Delta n$for this reaction is 0.
(d)- ${{N}_{2}}(g)+{{O}_{2}}(g)\to 2NO(g)$
In this reaction, the number of moles in the product is 1 and the number of moles in the reactant is 2.
$\Delta n={{n}_{P}}-{{n}_{R}}=1-2=-1$
So, $\Delta n$for this reaction is -1.
So, the $\Delta n$is maximum for reaction, $CaC{{O}_{3}}(s)\to CaO(s)+C{{O}_{2}}(g)$, so this reaction will have maximum $\Delta S$.
The correct answer is an option (b)- $CaC{{O}_{3}}(s)\to CaO(s)+C{{O}_{2}}(g)$.
Note: For calculating the change in the number of moles, only the moles of gases are considered. The moles of solids and liquids are not considered because an increase in randomness has a negligible effect.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
