
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\], if the rate of disappearance of \[N{H_3}\] is \[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\], what is the rate of formation of \[{H_2}O\]?
(A) \[5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\]
(B) \[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\]
(C) \[4 \times {10^{ - 4}}mol{L^{ - 1}}{s^{ - 1}}\]
(D) \[0.6 \times {10^{ - 4}}mol{L^{ - 1}}{s^{ - 1}}\]
Answer
219k+ views
Hint: Try to recall that rate of reaction is defined as the change in any one of the reactants or products per unit time. Now, by using this you can easily find the correct option from the given one.
Complete step by step solution:
It is known to you that the rate of a reaction can be expressed in terms of any reactant or product.
As concentration of reactant decreases, a negative sign is used to express the rate of reaction in terms of reactants.
As concentration of products increases, a positive sign is used to express the rate of reaction in terms of products.
Also, to get a unique value of the reaction rate (independent of the concentration terms chosen), we divide the rate of reaction defined with any of the reactants or products by the stoichiometric coefficient of that reactant or product involved in the reaction.
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\]
Rate of reaction \[ = - \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = - \dfrac{1}{5}\dfrac{{\Delta \left[ {{O_2}} \right]}}{{\Delta t}} = \dfrac{1}{4}\dfrac{{\Delta \left[ {NO} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
Given, rate of disappearance of \[N{H_3}\]=\[ - \dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}}\]=\[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Rate of formation of \[{H_2}O\]=\[\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\].
From rate equation,
\[ \Rightarrow \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
\[\therefore \dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}} = \dfrac{6}{4} \times 3.6 \times {10^{ - 3}} = 5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Hence, from above we can conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that in aqueous solutions, the rate of a reaction is not expressed in terms of change of concentration of water because the change is very small and negligible.
- Also, you should remember that the plot of concentration of reactant vs time, the tangent at any instant of time has a negative solution.
Complete step by step solution:
It is known to you that the rate of a reaction can be expressed in terms of any reactant or product.
As concentration of reactant decreases, a negative sign is used to express the rate of reaction in terms of reactants.
As concentration of products increases, a positive sign is used to express the rate of reaction in terms of products.
Also, to get a unique value of the reaction rate (independent of the concentration terms chosen), we divide the rate of reaction defined with any of the reactants or products by the stoichiometric coefficient of that reactant or product involved in the reaction.
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\]
Rate of reaction \[ = - \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = - \dfrac{1}{5}\dfrac{{\Delta \left[ {{O_2}} \right]}}{{\Delta t}} = \dfrac{1}{4}\dfrac{{\Delta \left[ {NO} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
Given, rate of disappearance of \[N{H_3}\]=\[ - \dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}}\]=\[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Rate of formation of \[{H_2}O\]=\[\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\].
From rate equation,
\[ \Rightarrow \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
\[\therefore \dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}} = \dfrac{6}{4} \times 3.6 \times {10^{ - 3}} = 5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Hence, from above we can conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that in aqueous solutions, the rate of a reaction is not expressed in terms of change of concentration of water because the change is very small and negligible.
- Also, you should remember that the plot of concentration of reactant vs time, the tangent at any instant of time has a negative solution.
Recently Updated Pages
Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Find the isoelectric point pI of Lysine A 556 B 974 class 12 chemistry JEE_Main

The order of basicity among the following compounds class 12 chemistry JEE_Main

The number of isomers in C4H10O are a7 b8 c6 d5 class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Haloalkanes and Haloarenes Class 12 Chemistry Chapter 6 CBSE Notes - 2025-26

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

