
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\], if the rate of disappearance of \[N{H_3}\] is \[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\], what is the rate of formation of \[{H_2}O\]?
(A) \[5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\]
(B) \[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\]
(C) \[4 \times {10^{ - 4}}mol{L^{ - 1}}{s^{ - 1}}\]
(D) \[0.6 \times {10^{ - 4}}mol{L^{ - 1}}{s^{ - 1}}\]
Answer
123.9k+ views
Hint: Try to recall that rate of reaction is defined as the change in any one of the reactants or products per unit time. Now, by using this you can easily find the correct option from the given one.
Complete step by step solution:
It is known to you that the rate of a reaction can be expressed in terms of any reactant or product.
As concentration of reactant decreases, a negative sign is used to express the rate of reaction in terms of reactants.
As concentration of products increases, a positive sign is used to express the rate of reaction in terms of products.
Also, to get a unique value of the reaction rate (independent of the concentration terms chosen), we divide the rate of reaction defined with any of the reactants or products by the stoichiometric coefficient of that reactant or product involved in the reaction.
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\]
Rate of reaction \[ = - \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = - \dfrac{1}{5}\dfrac{{\Delta \left[ {{O_2}} \right]}}{{\Delta t}} = \dfrac{1}{4}\dfrac{{\Delta \left[ {NO} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
Given, rate of disappearance of \[N{H_3}\]=\[ - \dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}}\]=\[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Rate of formation of \[{H_2}O\]=\[\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\].
From rate equation,
\[ \Rightarrow \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
\[\therefore \dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}} = \dfrac{6}{4} \times 3.6 \times {10^{ - 3}} = 5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Hence, from above we can conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that in aqueous solutions, the rate of a reaction is not expressed in terms of change of concentration of water because the change is very small and negligible.
- Also, you should remember that the plot of concentration of reactant vs time, the tangent at any instant of time has a negative solution.
Complete step by step solution:
It is known to you that the rate of a reaction can be expressed in terms of any reactant or product.
As concentration of reactant decreases, a negative sign is used to express the rate of reaction in terms of reactants.
As concentration of products increases, a positive sign is used to express the rate of reaction in terms of products.
Also, to get a unique value of the reaction rate (independent of the concentration terms chosen), we divide the rate of reaction defined with any of the reactants or products by the stoichiometric coefficient of that reactant or product involved in the reaction.
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\]
Rate of reaction \[ = - \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = - \dfrac{1}{5}\dfrac{{\Delta \left[ {{O_2}} \right]}}{{\Delta t}} = \dfrac{1}{4}\dfrac{{\Delta \left[ {NO} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
Given, rate of disappearance of \[N{H_3}\]=\[ - \dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}}\]=\[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Rate of formation of \[{H_2}O\]=\[\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\].
From rate equation,
\[ \Rightarrow \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
\[\therefore \dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}} = \dfrac{6}{4} \times 3.6 \times {10^{ - 3}} = 5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Hence, from above we can conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that in aqueous solutions, the rate of a reaction is not expressed in terms of change of concentration of water because the change is very small and negligible.
- Also, you should remember that the plot of concentration of reactant vs time, the tangent at any instant of time has a negative solution.
Recently Updated Pages
Classification of Drugs Based on Pharmacological Effect, Drug Action

Types of Solutions - Solution in Chemistry

Difference Between Alcohol and Phenol

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Physics Average Value and RMS Value JEE Main 2025

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids
