
For the given graph between decay rate and time find half-life (where R = decay rate)

A. \[\dfrac{{10}}{3}\ln 2\]
B. \[\dfrac{{20}}{3}\ln 2\]
C. \[\dfrac{3}{{20}}\ln 2\]
D. \[\dfrac{3}{{10}}\ln 2\]
Answer
162.9k+ views
Hint: Radioactive reactions like the decaying of nuclei follow first-order kinetics. Here the rate constant is then depicted by the symbol λ. The rate of decay, or activity, of a species of radioactive material, is the reduction in the no.of radioactive nuclei per unit of time.
Formula Used:
\[{\rm{lnR = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - \lambda t}}\];
where, R= decay rate of a reactant at a time 't'.
\[{{\rm{R}}_{\rm{o}}}\]= initial decay rate of reactant
\[{\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = ln2}}\]
\[{\rm{\lambda }}\]= rate constant
Complete Step by Step Solution:
The graph that is given in the question is a graph for a first-order reaction.
A reaction is called first-order if the rate of the reaction relies on one decay rate term only.
For the reaction:\[{\rm{A}} \to {\rm{B}}\]
,
the rate of reaction is directly proportional to the decay rate of A i.e., [A].
We know that for a first-order reaction,
\[{\rm{lnR = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - \lambda t}}\]-----(1)
The half-life of a reaction is the time in which the decay rate of a reactant is reduced to half of its initial decay rate.
It is depicted as .
So, \[{\rm{R = }}\dfrac{{{{\rm{R}}_{\rm{o}}}}}{{\rm{2}}}\]
Putting this value in the above-mentioned equation (1), we get
Hence,
\[{\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - lnR}}\]
\[ \Rightarrow {\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = }}\dfrac{{{\rm{ln}}{{\rm{R}}_{\rm{o}}}}}{{{\rm{ln}}\dfrac{{{{\rm{R}}_{\rm{o}}}}}{{\rm{2}}}}}\]
\[ \Rightarrow {\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = ln2}}\]
Image: Graph plotted between lnR and time
Here, in the line and is plotted against time.
The equation for the first-order reaction, which is \[{\rm{lnR = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - \lambda t}}\] resembles the equation \[{\rm{y = mx + c}}\].
In this case,\[{\rm{y = lnR,x = t,m=- \lambda }}\].
So, slope, \[{\rm{m = - \lambda }}\]
Slope\[ = - \left( {\dfrac{6}{{40}}} \right) = - \left( {\dfrac{3}{{20}}} \right)\]
The slope is negative as this slope is decreasing.
\[{\rm{ - \lambda = }}\dfrac{{{\rm{ - 3}}}}{{20}}\]
So, \[{\rm{\lambda = }}\dfrac{{\rm{3}}}{{20}}\]
So, \[{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = }}\dfrac{{{\rm{ln2}}}}{{\rm{\lambda }}}\]
=\[{\rm{ln}}\dfrac{{\rm{2}}}{{\left( {\dfrac{{\rm{3}}}{{{\rm{20}}}}} \right)}}\]
= \[\dfrac{3}{{20}}\ln 2\]
So, the half-life is \[\dfrac{3}{{20}}\ln 2\].
Note: While attempting the question, one must apply the appropriate form of rate law equation for a first-order reaction. He/she has to observe the values against which the given graph is plotted. Radioactive reactions work according to first-order kinetics. Radioactivity, or radioactive decay, is the emission of a particle or a photon that is due to the breakdown of the unstable nucleus of an atom.
Formula Used:
\[{\rm{lnR = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - \lambda t}}\];
where, R= decay rate of a reactant at a time 't'.
\[{{\rm{R}}_{\rm{o}}}\]= initial decay rate of reactant
\[{\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = ln2}}\]
\[{\rm{\lambda }}\]= rate constant
Complete Step by Step Solution:
The graph that is given in the question is a graph for a first-order reaction.
A reaction is called first-order if the rate of the reaction relies on one decay rate term only.
For the reaction:\[{\rm{A}} \to {\rm{B}}\]
,
the rate of reaction is directly proportional to the decay rate of A i.e., [A].
We know that for a first-order reaction,
\[{\rm{lnR = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - \lambda t}}\]-----(1)
The half-life of a reaction is the time in which the decay rate of a reactant is reduced to half of its initial decay rate.
It is depicted as .
So, \[{\rm{R = }}\dfrac{{{{\rm{R}}_{\rm{o}}}}}{{\rm{2}}}\]
Putting this value in the above-mentioned equation (1), we get
Hence,
\[{\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - lnR}}\]
\[ \Rightarrow {\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = }}\dfrac{{{\rm{ln}}{{\rm{R}}_{\rm{o}}}}}{{{\rm{ln}}\dfrac{{{{\rm{R}}_{\rm{o}}}}}{{\rm{2}}}}}\]
\[ \Rightarrow {\rm{\lambda }}{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = ln2}}\]
Image: Graph plotted between lnR and time
Here, in the line and is plotted against time.
The equation for the first-order reaction, which is \[{\rm{lnR = ln}}{{\rm{R}}_{\rm{o}}}{\rm{ - \lambda t}}\] resembles the equation \[{\rm{y = mx + c}}\].
In this case,\[{\rm{y = lnR,x = t,m=- \lambda }}\].
So, slope, \[{\rm{m = - \lambda }}\]
Slope\[ = - \left( {\dfrac{6}{{40}}} \right) = - \left( {\dfrac{3}{{20}}} \right)\]
The slope is negative as this slope is decreasing.
\[{\rm{ - \lambda = }}\dfrac{{{\rm{ - 3}}}}{{20}}\]
So, \[{\rm{\lambda = }}\dfrac{{\rm{3}}}{{20}}\]
So, \[{{\rm{t}}_{{\rm{1/2}}}}{\rm{ = }}\dfrac{{{\rm{ln2}}}}{{\rm{\lambda }}}\]
=\[{\rm{ln}}\dfrac{{\rm{2}}}{{\left( {\dfrac{{\rm{3}}}{{{\rm{20}}}}} \right)}}\]
= \[\dfrac{3}{{20}}\ln 2\]
So, the half-life is \[\dfrac{3}{{20}}\ln 2\].
Note: While attempting the question, one must apply the appropriate form of rate law equation for a first-order reaction. He/she has to observe the values against which the given graph is plotted. Radioactive reactions work according to first-order kinetics. Radioactivity, or radioactive decay, is the emission of a particle or a photon that is due to the breakdown of the unstable nucleus of an atom.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes
