
For an ideal gas, the Joule-Thompson coefficient is-
A. zero
B. positive
C. negative
D. depends on atomicity of gas
Answer
216.3k+ views
Hint: The Joule-Thomson coefficient is related to Joule-Thomson effect, which is also known as Kelvin–Joule effect .It is further related to the change in temperature of fluid while flowing from a higher pressure region to a region of lower pressure.
Step-by-step solution:
The Joule-Thomson effect talks about the change in temperature that a liquid undergoes, when it is made to flow with force through a valve. It is made sure that the entire system is in proper insulation during this process, so that there is no exchange of heat with the environment.
This effect is only valid for real gases or liquids.
Joule-Thomson coefficient is defined as the rate of change of temperature T with respect to pressure P, at constant enthalpy H. it is represented as$\mu_{JT}$.
This coefficient can be expressed in terms of the volume of gas V, its coefficient of thermal expansion ∝ and its heat capacity at constant pressure $C_P$
Numerically, Joule-Thomson coefficient can be written as, $\mu_{JT} = (\partial T/\partial P)_H = (V/C_P)(\alpha T - 1)$
The value of $\mu_{JT}$ depends upon- nature of gas, temperature of gas before expansion, pressure of gas before expansion.
All real gases possess an inversion point at which the value of $\mu_{JT}$ changes its sign.
In case of ideal gases, $\mu_{JT}$ is always zero, because they neither warm nor cool upon expansion at constant enthalpy. This implies that $\partial T = 0$ and thus .$\mu_{JT} = 0$. .
So, the correct option is A.
Note: The cooling effect produced in the Joule–Thomson expansion effect makes it a valuable tool in refrigeration. In the petrochemical industries, this effect is used as a standard process to liquefy gases. This method also finds its application in the production of liquid oxygen, nitrogen.
Step-by-step solution:
The Joule-Thomson effect talks about the change in temperature that a liquid undergoes, when it is made to flow with force through a valve. It is made sure that the entire system is in proper insulation during this process, so that there is no exchange of heat with the environment.
This effect is only valid for real gases or liquids.
Joule-Thomson coefficient is defined as the rate of change of temperature T with respect to pressure P, at constant enthalpy H. it is represented as$\mu_{JT}$.
This coefficient can be expressed in terms of the volume of gas V, its coefficient of thermal expansion ∝ and its heat capacity at constant pressure $C_P$
Numerically, Joule-Thomson coefficient can be written as, $\mu_{JT} = (\partial T/\partial P)_H = (V/C_P)(\alpha T - 1)$
The value of $\mu_{JT}$ depends upon- nature of gas, temperature of gas before expansion, pressure of gas before expansion.
All real gases possess an inversion point at which the value of $\mu_{JT}$ changes its sign.
| Temperature of gas | Sign of $\mu_{JT}$ | $\partial P$ | $\partial T$ | Effect on gas |
| Below inversion temperature | positive | Always negative | negative | Cooling of gas |
| Above inversion temperature | negative | Always negative | positive | Warming of gas |
In case of ideal gases, $\mu_{JT}$ is always zero, because they neither warm nor cool upon expansion at constant enthalpy. This implies that $\partial T = 0$ and thus .$\mu_{JT} = 0$. .
So, the correct option is A.
Note: The cooling effect produced in the Joule–Thomson expansion effect makes it a valuable tool in refrigeration. In the petrochemical industries, this effect is used as a standard process to liquefy gases. This method also finds its application in the production of liquid oxygen, nitrogen.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

