
For a person near a point of vision is $100cm$. Then the power of lens he must wear so as to have normal vision, should be:
(A) $ + 1D$
(B) $ - 1D$
(C) $ + 3D$
(D) $ - 3D$
Answer
232.5k+ views
Hint We are given with the near point of vision and are asked about the power of the lens for correcting the vision of the person. Thus, we will use the lens formula for this problem.
Formulae Used:
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Where,$f$ is the focal length of the required lens,$v$ is the image distance of the lens and$u$ is the required object distance.
$P = \dfrac{1}{f}$
Where,$P$ is the power of the lens.
Complete Step By Step Solution
Here,
For being able to see an object distinctively, the object should be placed at the minimum distance of distinct vision.
Thus,
$u = - 25cm$
Also,
Given that the near point of vision is$100cm$.
Thus,
$v = - 100cm$
Now,
Applying the lens formula, we get
$\dfrac{1}{f} = \dfrac{1}{{\left( { - 100} \right)}} - \dfrac{1}{{\left( { - 25} \right)}}$
Further, we get
$\dfrac{1}{f} = \dfrac{1}{{\left( { - 100} \right)}} + \dfrac{1}{{25}}$
Thus,
$\dfrac{1}{f} = \dfrac{1}{{25}} - \dfrac{1}{{100}}$
Further, we get
$\dfrac{1}{f} = \dfrac{{4 - 1}}{{100}}$
Then, we get
$\dfrac{1}{f} = \dfrac{3}{{100}}$
Then, we get
$f = \dfrac{{100}}{3}cm$
Now,
For calculating the power of the lens, we have to take the focal length in meters.
Thus,
We get
$f = \dfrac{{100}}{3} \times \dfrac{1}{{100}}m$
Further, we get
$f = \dfrac{1}{3}m$
Thus,
We will apply the formula for power
$P = \dfrac{1}{f}$
Then,
We will substitute the value for focal length here, we get
$P = \dfrac{1}{{\left( { + \dfrac{1}{3}} \right)}}$
Finally, we get
$P = + 3D$
Hence, the correct option is (C).
Additional Information Fundamentally, the power of the lens is the reciprocal of the focal length of the lens. But, in more depth we can define the power as the tangent of the angle formed by the line joining the focus of the lens with the principal axis.
Note The focal length and the power of the lens is positive. Thus, the lens to be used is a convex one.
Formulae Used:
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Where,$f$ is the focal length of the required lens,$v$ is the image distance of the lens and$u$ is the required object distance.
$P = \dfrac{1}{f}$
Where,$P$ is the power of the lens.
Complete Step By Step Solution
Here,
For being able to see an object distinctively, the object should be placed at the minimum distance of distinct vision.
Thus,
$u = - 25cm$
Also,
Given that the near point of vision is$100cm$.
Thus,
$v = - 100cm$
Now,
Applying the lens formula, we get
$\dfrac{1}{f} = \dfrac{1}{{\left( { - 100} \right)}} - \dfrac{1}{{\left( { - 25} \right)}}$
Further, we get
$\dfrac{1}{f} = \dfrac{1}{{\left( { - 100} \right)}} + \dfrac{1}{{25}}$
Thus,
$\dfrac{1}{f} = \dfrac{1}{{25}} - \dfrac{1}{{100}}$
Further, we get
$\dfrac{1}{f} = \dfrac{{4 - 1}}{{100}}$
Then, we get
$\dfrac{1}{f} = \dfrac{3}{{100}}$
Then, we get
$f = \dfrac{{100}}{3}cm$
Now,
For calculating the power of the lens, we have to take the focal length in meters.
Thus,
We get
$f = \dfrac{{100}}{3} \times \dfrac{1}{{100}}m$
Further, we get
$f = \dfrac{1}{3}m$
Thus,
We will apply the formula for power
$P = \dfrac{1}{f}$
Then,
We will substitute the value for focal length here, we get
$P = \dfrac{1}{{\left( { + \dfrac{1}{3}} \right)}}$
Finally, we get
$P = + 3D$
Hence, the correct option is (C).
Additional Information Fundamentally, the power of the lens is the reciprocal of the focal length of the lens. But, in more depth we can define the power as the tangent of the angle formed by the line joining the focus of the lens with the principal axis.
Note The focal length and the power of the lens is positive. Thus, the lens to be used is a convex one.
Recently Updated Pages
JEE Main Course 2026 - Important Updates and Details

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

Chemistry Question Pattern for JEE Main & Board Exams

Chemistry Question Paper PDF Download (2025, 2024) with Solutions

JEE Main Books 2026: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

