
For a gas $\dfrac{R}{{{C_v}}} = 0.4$ , where ‘R’ is the universal gas constant and ${C_v}$ is molar specific heat at constant volume. The gas is made up of molecules which are:
A) Rigid diatomic
B) Monoatomic
C) Non-rigid diatomic
D) Polyatomic
Answer
218.7k+ views
Hint: To solve this problem we can use the relationship between the specific heats at constant pressure and volume and the universal gas constant. The answer can be found by finding the values of specific heats at constant pressure and volume and then comparing the ratio of them with known values.
Complete step by step solution:
As explained in the hint, we will use the relation between the molar specific heats at constant pressure and volume and the universal gas constant to find out the required values using the information given in the question.
We know that,
${C_p} - {C_v} = R$----equation 1
Here ${C_p}$ is the molar specific heat capacity at constant pressure and ${C_v}$ is the molar specific heat capacity at constant volume. R is the universal gas constant having value equal to $8.314J.mo{l^{ - 1}}{K^{ - 1}}$
It is given that
$\dfrac{R}{{{C_v}}} = 0.4$
$ \Rightarrow {C_v} = \dfrac{5}{2}R$
Substituting this value in equation 1 we have
${C_p} = R + {C_v}$
$ \Rightarrow {C_p} = R + \dfrac{5}{2}R$
$ \Rightarrow {C_p} = \dfrac{7}{2}R$
The implies that,
$ \Rightarrow \gamma = \dfrac{{{C_p}}}{{{C_v}}} = \dfrac{{\dfrac{7}{2}R}}{{\dfrac{5}{2}R}}$
$ \Rightarrow \gamma = 1.4$
This ratio is known as adiabatic index or the ratio of specific heats or Laplace’s coefficient.
For monoatomic gases the value of $\gamma = 1.67$ and for diatomic gases this value is equal to $1.4$ .
For rigid diatomic gas, there are five degrees of freedom and ${C_v} = \dfrac{5}{2}R$
The calculated value of ${C_v}$ is also the same for the given problem.
Therefore, the gas is made up of molecules which are rigid diatomic.
Thus, option A is the correct option.
Note: Note that for monoatomic gas molecules the values of molar specific heat capacity at constant volume is ${C_v} = \dfrac{3}{2}R$ and value at constant pressure is ${C_p} = \dfrac{5}{2}R$. While for diatomic gas molecules, the values of molar specific heat capacity at constant pressure ${C_p} = \dfrac{7}{2}R$ and at constant volume is ${C_v} = \dfrac{5}{2}R$.
Complete step by step solution:
As explained in the hint, we will use the relation between the molar specific heats at constant pressure and volume and the universal gas constant to find out the required values using the information given in the question.
We know that,
${C_p} - {C_v} = R$----equation 1
Here ${C_p}$ is the molar specific heat capacity at constant pressure and ${C_v}$ is the molar specific heat capacity at constant volume. R is the universal gas constant having value equal to $8.314J.mo{l^{ - 1}}{K^{ - 1}}$
It is given that
$\dfrac{R}{{{C_v}}} = 0.4$
$ \Rightarrow {C_v} = \dfrac{5}{2}R$
Substituting this value in equation 1 we have
${C_p} = R + {C_v}$
$ \Rightarrow {C_p} = R + \dfrac{5}{2}R$
$ \Rightarrow {C_p} = \dfrac{7}{2}R$
The implies that,
$ \Rightarrow \gamma = \dfrac{{{C_p}}}{{{C_v}}} = \dfrac{{\dfrac{7}{2}R}}{{\dfrac{5}{2}R}}$
$ \Rightarrow \gamma = 1.4$
This ratio is known as adiabatic index or the ratio of specific heats or Laplace’s coefficient.
For monoatomic gases the value of $\gamma = 1.67$ and for diatomic gases this value is equal to $1.4$ .
For rigid diatomic gas, there are five degrees of freedom and ${C_v} = \dfrac{5}{2}R$
The calculated value of ${C_v}$ is also the same for the given problem.
Therefore, the gas is made up of molecules which are rigid diatomic.
Thus, option A is the correct option.
Note: Note that for monoatomic gas molecules the values of molar specific heat capacity at constant volume is ${C_v} = \dfrac{3}{2}R$ and value at constant pressure is ${C_p} = \dfrac{5}{2}R$. While for diatomic gas molecules, the values of molar specific heat capacity at constant pressure ${C_p} = \dfrac{7}{2}R$ and at constant volume is ${C_v} = \dfrac{5}{2}R$.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

