
Find the value of $\log (\log i) = $ and choose the correct option:
${\text{A}}{\text{. log}}\dfrac{\pi }{2}$
${\text{B}}{\text{. logi}}\dfrac{\pi }{2}$
${\text{C}}{\text{. log}}\dfrac{\pi }{2} + \dfrac{{i\pi }}{2}$
${\text{D}}{\text{. log}}\dfrac{\pi }{2} - \dfrac{{i\pi }}{2}$
Answer
216.6k+ views
Hint – We know, $z = {e^{i\theta }} = \cos \theta + i\sin \theta $, where z is a complex number. Now, if there is no real part in a complex number then,
$
\cos \theta = 0 \\
\Rightarrow \theta = \dfrac{\pi }{2} \\
$
Hence, we can say, if
$
z = i \\
\Rightarrow i = {e^{i\dfrac{\pi }{2}}} \\
$
Use this to solve.
Complete step by step answer:
We have been asked to find $\log (\log i)$.
So, using the hint we can write, $i = {e^{i\dfrac{\pi }{2}}}$.
So, the given equation $\log (\log i)$ will transform into-
$\log (\log {e^{i\dfrac{\pi }{2}}})$.
Now, solving it further, we get-
$
\log (\log {e^{i\dfrac{\pi }{2}}}) = \log \left( {i.\dfrac{\pi }{2}} \right) \\
= \log \left( {\dfrac{{i\pi }}{2}} \right) \\
$
Hence, the value of $\log (\log i) = \log \left( {\dfrac{{i\pi }}{2}} \right)$.
Therefore, the correct option is B.
Note – Whenever solving such types of questions, always use the concepts of complex numbers to solve the question step by step. As mentioned in the solution, let z = I, since it does not have a real part so keep the $\cos \theta = 0$, from here we can find the value of theta as 90 degrees, and then our equation will be easier to solve.
$
\cos \theta = 0 \\
\Rightarrow \theta = \dfrac{\pi }{2} \\
$
Hence, we can say, if
$
z = i \\
\Rightarrow i = {e^{i\dfrac{\pi }{2}}} \\
$
Use this to solve.
Complete step by step answer:
We have been asked to find $\log (\log i)$.
So, using the hint we can write, $i = {e^{i\dfrac{\pi }{2}}}$.
So, the given equation $\log (\log i)$ will transform into-
$\log (\log {e^{i\dfrac{\pi }{2}}})$.
Now, solving it further, we get-
$
\log (\log {e^{i\dfrac{\pi }{2}}}) = \log \left( {i.\dfrac{\pi }{2}} \right) \\
= \log \left( {\dfrac{{i\pi }}{2}} \right) \\
$
Hence, the value of $\log (\log i) = \log \left( {\dfrac{{i\pi }}{2}} \right)$.
Therefore, the correct option is B.
Note – Whenever solving such types of questions, always use the concepts of complex numbers to solve the question step by step. As mentioned in the solution, let z = I, since it does not have a real part so keep the $\cos \theta = 0$, from here we can find the value of theta as 90 degrees, and then our equation will be easier to solve.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

