
Find the value of ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
A. $\dfrac{1}{2}$
B. $\dfrac{1}{4}$
C. $\dfrac{1}{6}$
D. $\dfrac{1}{8}$
Answer
233.1k+ views
Hint: The given problem is based on the limits in calculus. So here, we first apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$ in the given equation. After that, we rewrite the expression in the form sine function and change the limit to apply the formula to get the value of the equation
Formula Used:
$1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$
${\lim }_{x \to a} k = k$ where $k$ is a constant.
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
Now we will apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$.
$ = {\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {2{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Again, apply the formula $1 - \cos 2x = 2{\sin ^2}x$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{2}} \right)} \right]}}{{{x^4}}}$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Now multiply ${\left( {{{\sin }^2}\dfrac{x}{2}} \right)^2}$ in the numerator and denominator
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}} \right]$
Rewrite in the form of $\dfrac{{\sin x}}{x}$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{\dfrac{{{x^4}}}{{{2^4}}} \cdot {2^4}}}} \right]$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot \dfrac{1}{{{2^4}}}} \right]$
Now we apply the formula ${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Since $x \to 0$
$ \Rightarrow \dfrac{x}{2} \to 0$
$ \Rightarrow \sin \dfrac{x}{2} \to 0$
$ \Rightarrow {\sin ^2}\dfrac{x}{2} \to 0$
Now changing the limits
$ = 2 \cdot {\lim }_{{{\sin }^2}\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\sin }^2}\dfrac{x}{2}}}} \right)^2} \cdot {\lim }_{\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^4} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Now we apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ and ${\lim }_{x \to a} k = k$
$ \Rightarrow 2 \cdot {1^2} \cdot {1^4} \cdot \dfrac{1}{{{2^4}}}$
$ \Rightarrow \dfrac{1}{{{2^3}}}$
$ \Rightarrow \dfrac{1}{8}$
Option ‘D’ is correct
Note: For solving this we are going to use a set of differentiation formulas and L-Hospital’s rule. A common mistake that we make here is not writing the expression in the form $\dfrac{{\sin x}}{x}$. And solving it directly in the form $2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}$ and apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ which is incorrect method.
Formula Used:
$1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$
${\lim }_{x \to a} k = k$ where $k$ is a constant.
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
Now we will apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$.
$ = {\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {2{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Again, apply the formula $1 - \cos 2x = 2{\sin ^2}x$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{2}} \right)} \right]}}{{{x^4}}}$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Now multiply ${\left( {{{\sin }^2}\dfrac{x}{2}} \right)^2}$ in the numerator and denominator
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}} \right]$
Rewrite in the form of $\dfrac{{\sin x}}{x}$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{\dfrac{{{x^4}}}{{{2^4}}} \cdot {2^4}}}} \right]$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot \dfrac{1}{{{2^4}}}} \right]$
Now we apply the formula ${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Since $x \to 0$
$ \Rightarrow \dfrac{x}{2} \to 0$
$ \Rightarrow \sin \dfrac{x}{2} \to 0$
$ \Rightarrow {\sin ^2}\dfrac{x}{2} \to 0$
Now changing the limits
$ = 2 \cdot {\lim }_{{{\sin }^2}\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\sin }^2}\dfrac{x}{2}}}} \right)^2} \cdot {\lim }_{\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^4} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Now we apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ and ${\lim }_{x \to a} k = k$
$ \Rightarrow 2 \cdot {1^2} \cdot {1^4} \cdot \dfrac{1}{{{2^4}}}$
$ \Rightarrow \dfrac{1}{{{2^3}}}$
$ \Rightarrow \dfrac{1}{8}$
Option ‘D’ is correct
Note: For solving this we are going to use a set of differentiation formulas and L-Hospital’s rule. A common mistake that we make here is not writing the expression in the form $\dfrac{{\sin x}}{x}$. And solving it directly in the form $2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}$ and apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ which is incorrect method.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

