
Find the value of ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
A. $\dfrac{1}{2}$
B. $\dfrac{1}{4}$
C. $\dfrac{1}{6}$
D. $\dfrac{1}{8}$
Answer
218.7k+ views
Hint: The given problem is based on the limits in calculus. So here, we first apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$ in the given equation. After that, we rewrite the expression in the form sine function and change the limit to apply the formula to get the value of the equation
Formula Used:
$1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$
${\lim }_{x \to a} k = k$ where $k$ is a constant.
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
Now we will apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$.
$ = {\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {2{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Again, apply the formula $1 - \cos 2x = 2{\sin ^2}x$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{2}} \right)} \right]}}{{{x^4}}}$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Now multiply ${\left( {{{\sin }^2}\dfrac{x}{2}} \right)^2}$ in the numerator and denominator
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}} \right]$
Rewrite in the form of $\dfrac{{\sin x}}{x}$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{\dfrac{{{x^4}}}{{{2^4}}} \cdot {2^4}}}} \right]$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot \dfrac{1}{{{2^4}}}} \right]$
Now we apply the formula ${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Since $x \to 0$
$ \Rightarrow \dfrac{x}{2} \to 0$
$ \Rightarrow \sin \dfrac{x}{2} \to 0$
$ \Rightarrow {\sin ^2}\dfrac{x}{2} \to 0$
Now changing the limits
$ = 2 \cdot {\lim }_{{{\sin }^2}\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\sin }^2}\dfrac{x}{2}}}} \right)^2} \cdot {\lim }_{\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^4} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Now we apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ and ${\lim }_{x \to a} k = k$
$ \Rightarrow 2 \cdot {1^2} \cdot {1^4} \cdot \dfrac{1}{{{2^4}}}$
$ \Rightarrow \dfrac{1}{{{2^3}}}$
$ \Rightarrow \dfrac{1}{8}$
Option ‘D’ is correct
Note: For solving this we are going to use a set of differentiation formulas and L-Hospital’s rule. A common mistake that we make here is not writing the expression in the form $\dfrac{{\sin x}}{x}$. And solving it directly in the form $2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}$ and apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ which is incorrect method.
Formula Used:
$1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$
${\lim }_{x \to a} k = k$ where $k$ is a constant.
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
Now we will apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$.
$ = {\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {2{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Again, apply the formula $1 - \cos 2x = 2{\sin ^2}x$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{2}} \right)} \right]}}{{{x^4}}}$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Now multiply ${\left( {{{\sin }^2}\dfrac{x}{2}} \right)^2}$ in the numerator and denominator
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}} \right]$
Rewrite in the form of $\dfrac{{\sin x}}{x}$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{\dfrac{{{x^4}}}{{{2^4}}} \cdot {2^4}}}} \right]$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot \dfrac{1}{{{2^4}}}} \right]$
Now we apply the formula ${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Since $x \to 0$
$ \Rightarrow \dfrac{x}{2} \to 0$
$ \Rightarrow \sin \dfrac{x}{2} \to 0$
$ \Rightarrow {\sin ^2}\dfrac{x}{2} \to 0$
Now changing the limits
$ = 2 \cdot {\lim }_{{{\sin }^2}\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\sin }^2}\dfrac{x}{2}}}} \right)^2} \cdot {\lim }_{\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^4} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Now we apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ and ${\lim }_{x \to a} k = k$
$ \Rightarrow 2 \cdot {1^2} \cdot {1^4} \cdot \dfrac{1}{{{2^4}}}$
$ \Rightarrow \dfrac{1}{{{2^3}}}$
$ \Rightarrow \dfrac{1}{8}$
Option ‘D’ is correct
Note: For solving this we are going to use a set of differentiation formulas and L-Hospital’s rule. A common mistake that we make here is not writing the expression in the form $\dfrac{{\sin x}}{x}$. And solving it directly in the form $2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}$ and apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ which is incorrect method.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

