
Find the value of ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
A. $\dfrac{1}{2}$
B. $\dfrac{1}{4}$
C. $\dfrac{1}{6}$
D. $\dfrac{1}{8}$
Answer
162k+ views
Hint: The given problem is based on the limits in calculus. So here, we first apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$ in the given equation. After that, we rewrite the expression in the form sine function and change the limit to apply the formula to get the value of the equation
Formula Used:
$1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$
${\lim }_{x \to a} k = k$ where $k$ is a constant.
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
Now we will apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$.
$ = {\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {2{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Again, apply the formula $1 - \cos 2x = 2{\sin ^2}x$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{2}} \right)} \right]}}{{{x^4}}}$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Now multiply ${\left( {{{\sin }^2}\dfrac{x}{2}} \right)^2}$ in the numerator and denominator
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}} \right]$
Rewrite in the form of $\dfrac{{\sin x}}{x}$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{\dfrac{{{x^4}}}{{{2^4}}} \cdot {2^4}}}} \right]$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot \dfrac{1}{{{2^4}}}} \right]$
Now we apply the formula ${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Since $x \to 0$
$ \Rightarrow \dfrac{x}{2} \to 0$
$ \Rightarrow \sin \dfrac{x}{2} \to 0$
$ \Rightarrow {\sin ^2}\dfrac{x}{2} \to 0$
Now changing the limits
$ = 2 \cdot {\lim }_{{{\sin }^2}\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\sin }^2}\dfrac{x}{2}}}} \right)^2} \cdot {\lim }_{\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^4} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Now we apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ and ${\lim }_{x \to a} k = k$
$ \Rightarrow 2 \cdot {1^2} \cdot {1^4} \cdot \dfrac{1}{{{2^4}}}$
$ \Rightarrow \dfrac{1}{{{2^3}}}$
$ \Rightarrow \dfrac{1}{8}$
Option ‘D’ is correct
Note: For solving this we are going to use a set of differentiation formulas and L-Hospital’s rule. A common mistake that we make here is not writing the expression in the form $\dfrac{{\sin x}}{x}$. And solving it directly in the form $2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}$ and apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ which is incorrect method.
Formula Used:
$1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$
${\lim }_{x \to a} k = k$ where $k$ is a constant.
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {1 - \cos x} \right)} \right]}}{{{x^4}}}$.
Now we will apply the formula $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$.
$ = {\lim }_{x \to 0} \dfrac{{\left[ {1 - \cos \left( {2{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Again, apply the formula $1 - \cos 2x = 2{\sin ^2}x$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{2}} \right)} \right]}}{{{x^4}}}$
$ = {\lim }_{x \to 0} \dfrac{{\left[ {2{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)} \right]}}{{{x^4}}}$
Now multiply ${\left( {{{\sin }^2}\dfrac{x}{2}} \right)^2}$ in the numerator and denominator
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}} \right]$
Rewrite in the form of $\dfrac{{\sin x}}{x}$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{\dfrac{{{x^4}}}{{{2^4}}} \cdot {2^4}}}} \right]$
$ = 2{\lim }_{x \to 0} \left[ {\dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot \dfrac{1}{{{2^4}}}} \right]$
Now we apply the formula ${\lim }_{x \to a} f\left( x \right) \cdot g\left( x \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {\sin \dfrac{x}{2}} \right)}^4}}}{{\dfrac{{{x^4}}}{{{2^4}}}}} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Since $x \to 0$
$ \Rightarrow \dfrac{x}{2} \to 0$
$ \Rightarrow \sin \dfrac{x}{2} \to 0$
$ \Rightarrow {\sin ^2}\dfrac{x}{2} \to 0$
Now changing the limits
$ = 2 \cdot {\lim }_{{{\sin }^2}\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\sin }^2}\dfrac{x}{2}}}} \right)^2} \cdot {\lim }_{\dfrac{x}{2} \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^4} \cdot {\lim }_{x \to 0} \dfrac{1}{{{2^4}}}$
Now we apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ and ${\lim }_{x \to a} k = k$
$ \Rightarrow 2 \cdot {1^2} \cdot {1^4} \cdot \dfrac{1}{{{2^4}}}$
$ \Rightarrow \dfrac{1}{{{2^3}}}$
$ \Rightarrow \dfrac{1}{8}$
Option ‘D’ is correct
Note: For solving this we are going to use a set of differentiation formulas and L-Hospital’s rule. A common mistake that we make here is not writing the expression in the form $\dfrac{{\sin x}}{x}$. And solving it directly in the form $2{\lim }_{x \to 0} \dfrac{{{{\sin }^2}\left( {{{\sin }^2}\dfrac{x}{2}} \right)}}{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}} \cdot {\lim }_{x \to 0} \dfrac{{{{\left( {{{\sin }^2}\dfrac{x}{2}} \right)}^2}}}{{{x^4}}}$ and apply the formula ${\lim }_{x \to a} \dfrac{{\sin \left( {x - a} \right)}}{{x - a}} = 1$ which is incorrect method.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
