
Find the value of ${{\lambda }}$ in unit vector ${{0}}{{.4}}\;{{\hat i}}\;{{ + 0}}{{.8}}\;{{\hat j}}\;{{ + }}\;{{\lambda }}\;{{\hat k}}$
Answer
232.8k+ views
Hint: A unit vector is that vector which have magnitude $1.$ so we will put the magnitude of this vector equal to $1$ and then calculate value of ${{\lambda }}$ , A unit vector can be in any direction. Unit vectors are helpful to determine the base form of a vector space. Every vector in a given space can be expressed as a linear combination of unit vectors.
Formula used:
$\left| {{{\vec A}}} \right|\;{{ = }}\sqrt {{{{A}}_{{x}}}^{{2}}{{ + }}{{{A}}_{{y}}}^{{2}}{{ + }}{{{A}}_{{z}}}^{{2}}} $
Where $\left| {{{\vec A}}} \right|$ is any vector and ${{{A}}_{{{x}}\;{{,}}\;}}{{{A}}_{{{y}}\;{{,}}}}{{{A}}_{{z}}}$ are its components along x, y, z directions respectively and $\left| {{{\vec A}}} \right|$ is the magnitude of this vector.
Complete step by step solution:
The given vector is $\dfrac{{{4}}}{{{{10}}}}{{\hat i}}\;{{ + }}\,\dfrac{{{8}}}{{{{10}}}}{{\hat j}}\;{{ + }}\;{{\lambda \hat k}}$
As, the vector is unit vector so, its magnitude will be equal to $1$ i.e.
$\sqrt {{{\left( {\dfrac{{{4}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{\left( {\dfrac{{{8}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{{\lambda }}^{{2}}}} {{ = 1}}$
$ \Rightarrow \;\dfrac{{{{16}}}}{{{{100}}}}{{ + }}\dfrac{{{{64}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow \dfrac{{{{100}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow {{\lambda }}\;{{ = }}\;{{0}}$
To find a unit vector with the same direction as a given vector, we divide the vector by its magnitude.
Any vector can be converted into a unit vector by dividing it by the magnitude of the given vector. The dot product for any two unit vectors is a scalar quantity whereas the cross product of any two arbitrary unit vectors results in a third vector orthogonal to both of them.
Note: For such a question always put the magnitude equal to $1.$ Normal vector is a vector which is perpendicular to the surface at a given point. They are also called “normal,” to a surface is a vector. When normals are estimated on any closed surfaces, the normal pointing towards the interior of the surface and normal pointing outward are usually discovered.
Formula used:
$\left| {{{\vec A}}} \right|\;{{ = }}\sqrt {{{{A}}_{{x}}}^{{2}}{{ + }}{{{A}}_{{y}}}^{{2}}{{ + }}{{{A}}_{{z}}}^{{2}}} $
Where $\left| {{{\vec A}}} \right|$ is any vector and ${{{A}}_{{{x}}\;{{,}}\;}}{{{A}}_{{{y}}\;{{,}}}}{{{A}}_{{z}}}$ are its components along x, y, z directions respectively and $\left| {{{\vec A}}} \right|$ is the magnitude of this vector.
Complete step by step solution:
The given vector is $\dfrac{{{4}}}{{{{10}}}}{{\hat i}}\;{{ + }}\,\dfrac{{{8}}}{{{{10}}}}{{\hat j}}\;{{ + }}\;{{\lambda \hat k}}$
As, the vector is unit vector so, its magnitude will be equal to $1$ i.e.
$\sqrt {{{\left( {\dfrac{{{4}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{\left( {\dfrac{{{8}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{{\lambda }}^{{2}}}} {{ = 1}}$
$ \Rightarrow \;\dfrac{{{{16}}}}{{{{100}}}}{{ + }}\dfrac{{{{64}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow \dfrac{{{{100}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow {{\lambda }}\;{{ = }}\;{{0}}$
To find a unit vector with the same direction as a given vector, we divide the vector by its magnitude.
Any vector can be converted into a unit vector by dividing it by the magnitude of the given vector. The dot product for any two unit vectors is a scalar quantity whereas the cross product of any two arbitrary unit vectors results in a third vector orthogonal to both of them.
Note: For such a question always put the magnitude equal to $1.$ Normal vector is a vector which is perpendicular to the surface at a given point. They are also called “normal,” to a surface is a vector. When normals are estimated on any closed surfaces, the normal pointing towards the interior of the surface and normal pointing outward are usually discovered.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

