
Find the value of ${{\lambda }}$ in unit vector ${{0}}{{.4}}\;{{\hat i}}\;{{ + 0}}{{.8}}\;{{\hat j}}\;{{ + }}\;{{\lambda }}\;{{\hat k}}$
Answer
216k+ views
Hint: A unit vector is that vector which have magnitude $1.$ so we will put the magnitude of this vector equal to $1$ and then calculate value of ${{\lambda }}$ , A unit vector can be in any direction. Unit vectors are helpful to determine the base form of a vector space. Every vector in a given space can be expressed as a linear combination of unit vectors.
Formula used:
$\left| {{{\vec A}}} \right|\;{{ = }}\sqrt {{{{A}}_{{x}}}^{{2}}{{ + }}{{{A}}_{{y}}}^{{2}}{{ + }}{{{A}}_{{z}}}^{{2}}} $
Where $\left| {{{\vec A}}} \right|$ is any vector and ${{{A}}_{{{x}}\;{{,}}\;}}{{{A}}_{{{y}}\;{{,}}}}{{{A}}_{{z}}}$ are its components along x, y, z directions respectively and $\left| {{{\vec A}}} \right|$ is the magnitude of this vector.
Complete step by step solution:
The given vector is $\dfrac{{{4}}}{{{{10}}}}{{\hat i}}\;{{ + }}\,\dfrac{{{8}}}{{{{10}}}}{{\hat j}}\;{{ + }}\;{{\lambda \hat k}}$
As, the vector is unit vector so, its magnitude will be equal to $1$ i.e.
$\sqrt {{{\left( {\dfrac{{{4}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{\left( {\dfrac{{{8}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{{\lambda }}^{{2}}}} {{ = 1}}$
$ \Rightarrow \;\dfrac{{{{16}}}}{{{{100}}}}{{ + }}\dfrac{{{{64}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow \dfrac{{{{100}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow {{\lambda }}\;{{ = }}\;{{0}}$
To find a unit vector with the same direction as a given vector, we divide the vector by its magnitude.
Any vector can be converted into a unit vector by dividing it by the magnitude of the given vector. The dot product for any two unit vectors is a scalar quantity whereas the cross product of any two arbitrary unit vectors results in a third vector orthogonal to both of them.
Note: For such a question always put the magnitude equal to $1.$ Normal vector is a vector which is perpendicular to the surface at a given point. They are also called “normal,” to a surface is a vector. When normals are estimated on any closed surfaces, the normal pointing towards the interior of the surface and normal pointing outward are usually discovered.
Formula used:
$\left| {{{\vec A}}} \right|\;{{ = }}\sqrt {{{{A}}_{{x}}}^{{2}}{{ + }}{{{A}}_{{y}}}^{{2}}{{ + }}{{{A}}_{{z}}}^{{2}}} $
Where $\left| {{{\vec A}}} \right|$ is any vector and ${{{A}}_{{{x}}\;{{,}}\;}}{{{A}}_{{{y}}\;{{,}}}}{{{A}}_{{z}}}$ are its components along x, y, z directions respectively and $\left| {{{\vec A}}} \right|$ is the magnitude of this vector.
Complete step by step solution:
The given vector is $\dfrac{{{4}}}{{{{10}}}}{{\hat i}}\;{{ + }}\,\dfrac{{{8}}}{{{{10}}}}{{\hat j}}\;{{ + }}\;{{\lambda \hat k}}$
As, the vector is unit vector so, its magnitude will be equal to $1$ i.e.
$\sqrt {{{\left( {\dfrac{{{4}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{\left( {\dfrac{{{8}}}{{{{10}}}}} \right)}^{{2}}}{{ + }}{{{\lambda }}^{{2}}}} {{ = 1}}$
$ \Rightarrow \;\dfrac{{{{16}}}}{{{{100}}}}{{ + }}\dfrac{{{{64}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow \dfrac{{{{100}}}}{{{{100}}}}{{ + }}{{{\lambda }}^{{2}}}\;{{ = }}\;{{1}}$
$ \Rightarrow {{\lambda }}\;{{ = }}\;{{0}}$
To find a unit vector with the same direction as a given vector, we divide the vector by its magnitude.
Any vector can be converted into a unit vector by dividing it by the magnitude of the given vector. The dot product for any two unit vectors is a scalar quantity whereas the cross product of any two arbitrary unit vectors results in a third vector orthogonal to both of them.
Note: For such a question always put the magnitude equal to $1.$ Normal vector is a vector which is perpendicular to the surface at a given point. They are also called “normal,” to a surface is a vector. When normals are estimated on any closed surfaces, the normal pointing towards the interior of the surface and normal pointing outward are usually discovered.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

