
Find the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$
A. $\dfrac{\pi }{2}$
B. ${\cos ^{ - 1}}\left( {\dfrac{{171}}{{221}}} \right)$
C. $\dfrac{\pi }{4}$
D. None of these
Answer
164.1k+ views
Hint: In the given question, we need to find the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$. As we can see we are given an inverse trigonometric function. An inverse trigonometric function is defined as the inverse of the basic trigonometric functions. At first, we will try to convert the inverse function of $\tan $ into the inverse function of $\cos $ by applying $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ formula/identity and simplify the expression. After this we will apply ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$ formula/identity to get our required answer.
Formula used: $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$
Complete step by step solution:
We have, ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$
As we know that $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$. Therefore, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{5}} \right)}^2}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - \dfrac{1}{{25}}}}{{1 + \dfrac{1}{{25}}}}} \right)$
On taking LCM, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{{25 - 1}}{{25}}}}{{\dfrac{{25 + 1}}{{25}}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}} \times \dfrac{{25}}{{26}}} \right)$
On simplification, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)$
As we know ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$. Therefore, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{15}}{{17}} \times \dfrac{{12}}{{13}} - \sqrt {1 - {{\left( {\dfrac{{15}}{{17}}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {1 - \dfrac{{225}}{{289}}} \sqrt {1 - \dfrac{{144}}{{169}}} } \right\}$
On taking LCM, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{289 - 225}}{{289}}} \sqrt {\dfrac{{169 - 144}}{{169}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{64}}{{289}}} \sqrt {\dfrac{{25}}{{169}}} } \right\}$
We can also write the above written expression as
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{{8^2}}}{{{{\left( {17} \right)}^2}}}} \sqrt {\dfrac{{{5^2}}}{{{{\left( {13} \right)}^2}}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{8}{{17}} \times \dfrac{5}{{13}}} \right)$
On multiplication of terms, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{{40}}{{221}}} \right)$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$
Hence, the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$ is ${\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$.
Therefore, the correct option is D.
Note: To solve these types of questions, one must remember all the standard formulas of inverse trigonometric functions. Most of the inverse trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas. We should take care of the calculations so as to be sure of our final answer.
Some formulas of inverse trigonometric functions are written below:
1. ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
2. ${\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
3. ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x + y \geqslant 0$
4. ${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy + \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x \leqslant y$
5. $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, if $ - 1 < x < 1$
6. $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$, if $ - 1 \leqslant x \leqslant 1$
7. $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$, if $0 \leqslant x < \infty $
8. $2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$, if $ - \dfrac{1}{{\sqrt 2 }} \leqslant x \leqslant \dfrac{1}{{\sqrt 2 }}$
9. $2{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {2{x^2} - 1} \right)$, if $0 \leqslant x \leqslant 1$
We use them accordingly to the given problem.
Formula used: $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$
Complete step by step solution:
We have, ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$
As we know that $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$. Therefore, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{5}} \right)}^2}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - \dfrac{1}{{25}}}}{{1 + \dfrac{1}{{25}}}}} \right)$
On taking LCM, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{{25 - 1}}{{25}}}}{{\dfrac{{25 + 1}}{{25}}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}} \times \dfrac{{25}}{{26}}} \right)$
On simplification, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)$
As we know ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$. Therefore, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{15}}{{17}} \times \dfrac{{12}}{{13}} - \sqrt {1 - {{\left( {\dfrac{{15}}{{17}}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {1 - \dfrac{{225}}{{289}}} \sqrt {1 - \dfrac{{144}}{{169}}} } \right\}$
On taking LCM, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{289 - 225}}{{289}}} \sqrt {\dfrac{{169 - 144}}{{169}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{64}}{{289}}} \sqrt {\dfrac{{25}}{{169}}} } \right\}$
We can also write the above written expression as
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{{8^2}}}{{{{\left( {17} \right)}^2}}}} \sqrt {\dfrac{{{5^2}}}{{{{\left( {13} \right)}^2}}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{8}{{17}} \times \dfrac{5}{{13}}} \right)$
On multiplication of terms, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{{40}}{{221}}} \right)$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$
Hence, the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$ is ${\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$.
Therefore, the correct option is D.
Note: To solve these types of questions, one must remember all the standard formulas of inverse trigonometric functions. Most of the inverse trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas. We should take care of the calculations so as to be sure of our final answer.
Some formulas of inverse trigonometric functions are written below:
1. ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
2. ${\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
3. ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x + y \geqslant 0$
4. ${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy + \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x \leqslant y$
5. $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, if $ - 1 < x < 1$
6. $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$, if $ - 1 \leqslant x \leqslant 1$
7. $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$, if $0 \leqslant x < \infty $
8. $2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$, if $ - \dfrac{1}{{\sqrt 2 }} \leqslant x \leqslant \dfrac{1}{{\sqrt 2 }}$
9. $2{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {2{x^2} - 1} \right)$, if $0 \leqslant x \leqslant 1$
We use them accordingly to the given problem.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
