
Find the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$
A. $\dfrac{\pi }{2}$
B. ${\cos ^{ - 1}}\left( {\dfrac{{171}}{{221}}} \right)$
C. $\dfrac{\pi }{4}$
D. None of these
Answer
218.7k+ views
Hint: In the given question, we need to find the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$. As we can see we are given an inverse trigonometric function. An inverse trigonometric function is defined as the inverse of the basic trigonometric functions. At first, we will try to convert the inverse function of $\tan $ into the inverse function of $\cos $ by applying $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ formula/identity and simplify the expression. After this we will apply ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$ formula/identity to get our required answer.
Formula used: $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$
Complete step by step solution:
We have, ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$
As we know that $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$. Therefore, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{5}} \right)}^2}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - \dfrac{1}{{25}}}}{{1 + \dfrac{1}{{25}}}}} \right)$
On taking LCM, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{{25 - 1}}{{25}}}}{{\dfrac{{25 + 1}}{{25}}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}} \times \dfrac{{25}}{{26}}} \right)$
On simplification, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)$
As we know ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$. Therefore, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{15}}{{17}} \times \dfrac{{12}}{{13}} - \sqrt {1 - {{\left( {\dfrac{{15}}{{17}}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {1 - \dfrac{{225}}{{289}}} \sqrt {1 - \dfrac{{144}}{{169}}} } \right\}$
On taking LCM, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{289 - 225}}{{289}}} \sqrt {\dfrac{{169 - 144}}{{169}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{64}}{{289}}} \sqrt {\dfrac{{25}}{{169}}} } \right\}$
We can also write the above written expression as
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{{8^2}}}{{{{\left( {17} \right)}^2}}}} \sqrt {\dfrac{{{5^2}}}{{{{\left( {13} \right)}^2}}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{8}{{17}} \times \dfrac{5}{{13}}} \right)$
On multiplication of terms, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{{40}}{{221}}} \right)$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$
Hence, the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$ is ${\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$.
Therefore, the correct option is D.
Note: To solve these types of questions, one must remember all the standard formulas of inverse trigonometric functions. Most of the inverse trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas. We should take care of the calculations so as to be sure of our final answer.
Some formulas of inverse trigonometric functions are written below:
1. ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
2. ${\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
3. ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x + y \geqslant 0$
4. ${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy + \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x \leqslant y$
5. $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, if $ - 1 < x < 1$
6. $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$, if $ - 1 \leqslant x \leqslant 1$
7. $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$, if $0 \leqslant x < \infty $
8. $2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$, if $ - \dfrac{1}{{\sqrt 2 }} \leqslant x \leqslant \dfrac{1}{{\sqrt 2 }}$
9. $2{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {2{x^2} - 1} \right)$, if $0 \leqslant x \leqslant 1$
We use them accordingly to the given problem.
Formula used: $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$
Complete step by step solution:
We have, ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$
As we know that $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$. Therefore, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{5}} \right)}^2}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - \dfrac{1}{{25}}}}{{1 + \dfrac{1}{{25}}}}} \right)$
On taking LCM, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{{25 - 1}}{{25}}}}{{\dfrac{{25 + 1}}{{25}}}}} \right)$
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{24}}{{25}} \times \dfrac{{25}}{{26}}} \right)$
On simplification, we get
$ = {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)$
As we know ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$. Therefore, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{15}}{{17}} \times \dfrac{{12}}{{13}} - \sqrt {1 - {{\left( {\dfrac{{15}}{{17}}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {1 - \dfrac{{225}}{{289}}} \sqrt {1 - \dfrac{{144}}{{169}}} } \right\}$
On taking LCM, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{289 - 225}}{{289}}} \sqrt {\dfrac{{169 - 144}}{{169}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{64}}{{289}}} \sqrt {\dfrac{{25}}{{169}}} } \right\}$
We can also write the above written expression as
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left\{ {\dfrac{{180}}{{221}} - \sqrt {\dfrac{{{8^2}}}{{{{\left( {17} \right)}^2}}}} \sqrt {\dfrac{{{5^2}}}{{{{\left( {13} \right)}^2}}}} } \right\}$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{8}{{17}} \times \dfrac{5}{{13}}} \right)$
On multiplication of terms, we get
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{180}}{{221}} - \dfrac{{40}}{{221}}} \right)$
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$
Hence, the value of ${\cos ^{ - 1}}\left( {\dfrac{{15}}{{17}}} \right) + 2{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right)$ is ${\cos ^{ - 1}}\left( {\dfrac{{140}}{{221}}} \right)$.
Therefore, the correct option is D.
Note: To solve these types of questions, one must remember all the standard formulas of inverse trigonometric functions. Most of the inverse trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas. We should take care of the calculations so as to be sure of our final answer.
Some formulas of inverse trigonometric functions are written below:
1. ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
2. ${\sin ^{ - 1}}x - {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left\{ {x\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and ${x^2} + {y^2} \leqslant 1$
3. ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x + y \geqslant 0$
4. ${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = {\cos ^{ - 1}}\left\{ {xy + \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right\}$, if $ - 1 \leqslant x$, $y \leqslant 1$ and $x \leqslant y$
5. $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$, if $ - 1 < x < 1$
6. $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$, if $ - 1 \leqslant x \leqslant 1$
7. $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$, if $0 \leqslant x < \infty $
8. $2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$, if $ - \dfrac{1}{{\sqrt 2 }} \leqslant x \leqslant \dfrac{1}{{\sqrt 2 }}$
9. $2{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {2{x^2} - 1} \right)$, if $0 \leqslant x \leqslant 1$
We use them accordingly to the given problem.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

