
Find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
(a) 660
(b) 620
(c) 680
(d) 600
Answer
232.8k+ views
Hint: We start solving the problem by finding the general equation to represent each term of the series. After finding the general equation, we take summation of it up to n terms. Once we find the summation up to n terms, we substitute 10 in place in n and make required calculations to get the desired result.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

