
Find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
(a) 660
(b) 620
(c) 680
(d) 600
Answer
154.5k+ views
Hint: We start solving the problem by finding the general equation to represent each term of the series. After finding the general equation, we take summation of it up to n terms. Once we find the summation up to n terms, we substitute 10 in place in n and make required calculations to get the desired result.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

Raoult's Law with Examples

Other Pages
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

JEE Advanced 2025 Revision Notes for Mechanics

JEE Advanced 2025 Surface Chemistry Revision Notes

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

List of Fastest Century In IPL - Cricket League and FAQs
