
Find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
(a) 660
(b) 620
(c) 680
(d) 600
Answer
124.5k+ views
Hint: We start solving the problem by finding the general equation to represent each term of the series. After finding the general equation, we take summation of it up to n terms. Once we find the summation up to n terms, we substitute 10 in place in n and make required calculations to get the desired result.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Complete step-by-step answer:
According to the problem, we need to find the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms.
Let us find the general term of the series to solve for the sum of the series.
$\Rightarrow \dfrac{\left( 2+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 4+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 6+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ .
$\Rightarrow \dfrac{\left( 2\left( 1 \right)+1 \right)\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{\left( 2\left( 2 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{\left( 2\left( 3 \right)+1 \right)\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ ---(1).
We can see that each term is of the form $\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}$ for $r=1,2,3,......n$.
We know that sum of the squares of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the cubes of the first n natural numbers is $\sum\limits_{r=1}^{n}{{{r}^{3}}}=\dfrac{{{n}^{2}}\times {{\left( n+1 \right)}^{2}}}{4}$.
So, we get general term as \[\dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( 2r+1 \right)\times \left( \dfrac{{{r}^{2}}\times {{\left( r+1 \right)}^{2}}}{4} \right)}{\left( \dfrac{r\times \left( r+1 \right)\times \left( 2r+1 \right)}{6} \right)}\].
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{\left( \dfrac{r\times \left( r+1 \right)}{2} \right)}{\left( \dfrac{1}{3} \right)}$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( r\times \left( r+1 \right) \right)$.
$\Rightarrow \dfrac{\left( 2r+1 \right)\times \sum\limits_{1}^{r}{{{r}^{3}}}}{\sum\limits_{1}^{r}{{{r}^{2}}}}=\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)$.
We can represent sum of the series in equation (1) as $\sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}$.
$\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \sum\limits_{r=1}^{n}{{{r}^{2}}}+\sum\limits_{r=1}^{n}{r} \right)$ ---(2).
We know that sum of the squares of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{{{r}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}$ and sum of the first n natural numbers is defined as $\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}$. We use these results in equation (2).
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\dfrac{3}{2}\times \left( \left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\left( \dfrac{n\left( n+1 \right)}{2} \right) \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{2\times 2} \right)\times \left( \dfrac{\left( 2n+1 \right)}{3}+1 \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+1+3}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2n+4}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{3\times n\times \left( n+1 \right)}{4} \right)\times \left( \dfrac{2\left( n+2 \right)}{3} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{n}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{n\times \left( n+1 \right)\times \left( n+2 \right)}{2} \right)\] ---(3).
Now we substitute 10 in place of n in equation (3).
So, we have \[\sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 10+1 \right)\times \left( 10+2 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=\left( \dfrac{10\times \left( 11 \right)\times \left( 12 \right)}{2} \right)\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=10\times 11\times 6\].
\[\Rightarrow \sum\limits_{r=1}^{10}{\dfrac{3}{2}\times \left( {{r}^{2}}+r \right)}=660\].
We have found the sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
∴ The sum of the series $\dfrac{3\times {{1}^{3}}}{{{1}^{2}}}+\dfrac{5\times \left( {{1}^{3}}+{{2}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}}+\dfrac{7\times \left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}} \right)}{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}+.......$ up to 10 terms as 660.
The correct option for the given problem is (a).
Note: We should the take the general equation to represent each term of series as $\dfrac{\left( 2r+1 \right).{{r}^{3}}}{{{r}^{2}}}$, because it will accommodate cube and square of only one number. Whenever we get this type of problem, we try to find the general equation of the terms which makes our sum easier. We can also take 10 in place of n while finding the general summation for n terms.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 13 Statistics
