Answer
Verified
85.8k+ views
Hint: Use the formula of Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\] where, a initial term of the AP and d is the common difference of successive numbers. Calculate the value of a. We use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]. Calculate the sum of the AP, \[{S_n}\].
Complete step by step solution:
Given data:The ${22^{nd}}$ term that is given for an arithmetic progression is 149.
Common difference is \[d = 7\]
Now, we know about the Arithmetic progression sequence for the nth terms is given by the following expression:
\[{a_n} = a + \left( {n - 1} \right)d\]
Here, the first term of the arithmetic progression sequence is $a$.
Now, calculate the value of $a$. Substitute the value of d = 7,n = 22 and ${a_n} = 149$ in \[{a_n} = a + \left( {n - 1} \right)d\].
149 = a + (22- 1)7
149 = a + 147
a = 149 - 147
= 2
Now, we know about the formula of the sum of n terms in Arithmetic progression is given by the following expression:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ by substituting $n = 23$, $a = 2$ and $a_n = 149$ in the expression for the sum of the Arithmetic progression \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
${S_{22}} = \dfrac{{22}}{2}\left[ {2 + 149} \right]\\
= 11\left[ {151} \right]\\
= 1,661
$
Hence, the sum of the first 22 terms of an Arithmetic progression is \[{S_{22}} = 1,661\].
Note: The general equation of the Arithmetic progression is \[a,a + d,a + 2d,a + 3d,...\], where a is initial term of the AP and d is the common difference of successive numbers. Make sure use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\] and use the Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\].
Complete step by step solution:
Given data:The ${22^{nd}}$ term that is given for an arithmetic progression is 149.
Common difference is \[d = 7\]
Now, we know about the Arithmetic progression sequence for the nth terms is given by the following expression:
\[{a_n} = a + \left( {n - 1} \right)d\]
Here, the first term of the arithmetic progression sequence is $a$.
Now, calculate the value of $a$. Substitute the value of d = 7,n = 22 and ${a_n} = 149$ in \[{a_n} = a + \left( {n - 1} \right)d\].
149 = a + (22- 1)7
149 = a + 147
a = 149 - 147
= 2
Now, we know about the formula of the sum of n terms in Arithmetic progression is given by the following expression:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ by substituting $n = 23$, $a = 2$ and $a_n = 149$ in the expression for the sum of the Arithmetic progression \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
${S_{22}} = \dfrac{{22}}{2}\left[ {2 + 149} \right]\\
= 11\left[ {151} \right]\\
= 1,661
$
Hence, the sum of the first 22 terms of an Arithmetic progression is \[{S_{22}} = 1,661\].
Note: The general equation of the Arithmetic progression is \[a,a + d,a + 2d,a + 3d,...\], where a is initial term of the AP and d is the common difference of successive numbers. Make sure use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\] and use the Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\].
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A scooterist sees a bus 1km ahead of him moving with class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
A cylinder of 10 Lcapacity at 300 Kcontaining the Hegas class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The process requiring the absorption of energy is A class 11 chemistry JEE_Main