
Find the sum of the first 22 terms of an AP in which \[d = 7\] and ${22^{nd}}$ term is 149.
Answer
205.2k+ views
Hint: Use the formula of Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\] where, a initial term of the AP and d is the common difference of successive numbers. Calculate the value of a. We use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]. Calculate the sum of the AP, \[{S_n}\].
Complete step by step solution:
Given data:The ${22^{nd}}$ term that is given for an arithmetic progression is 149.
Common difference is \[d = 7\]
Now, we know about the Arithmetic progression sequence for the nth terms is given by the following expression:
\[{a_n} = a + \left( {n - 1} \right)d\]
Here, the first term of the arithmetic progression sequence is $a$.
Now, calculate the value of $a$. Substitute the value of d = 7,n = 22 and ${a_n} = 149$ in \[{a_n} = a + \left( {n - 1} \right)d\].
149 = a + (22- 1)7
149 = a + 147
a = 149 - 147
= 2
Now, we know about the formula of the sum of n terms in Arithmetic progression is given by the following expression:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ by substituting $n = 23$, $a = 2$ and $a_n = 149$ in the expression for the sum of the Arithmetic progression \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
${S_{22}} = \dfrac{{22}}{2}\left[ {2 + 149} \right]\\
= 11\left[ {151} \right]\\
= 1,661
$
Hence, the sum of the first 22 terms of an Arithmetic progression is \[{S_{22}} = 1,661\].
Note: The general equation of the Arithmetic progression is \[a,a + d,a + 2d,a + 3d,...\], where a is initial term of the AP and d is the common difference of successive numbers. Make sure use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\] and use the Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\].
Complete step by step solution:
Given data:The ${22^{nd}}$ term that is given for an arithmetic progression is 149.
Common difference is \[d = 7\]
Now, we know about the Arithmetic progression sequence for the nth terms is given by the following expression:
\[{a_n} = a + \left( {n - 1} \right)d\]
Here, the first term of the arithmetic progression sequence is $a$.
Now, calculate the value of $a$. Substitute the value of d = 7,n = 22 and ${a_n} = 149$ in \[{a_n} = a + \left( {n - 1} \right)d\].
149 = a + (22- 1)7
149 = a + 147
a = 149 - 147
= 2
Now, we know about the formula of the sum of n terms in Arithmetic progression is given by the following expression:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ by substituting $n = 23$, $a = 2$ and $a_n = 149$ in the expression for the sum of the Arithmetic progression \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
${S_{22}} = \dfrac{{22}}{2}\left[ {2 + 149} \right]\\
= 11\left[ {151} \right]\\
= 1,661
$
Hence, the sum of the first 22 terms of an Arithmetic progression is \[{S_{22}} = 1,661\].
Note: The general equation of the Arithmetic progression is \[a,a + d,a + 2d,a + 3d,...\], where a is initial term of the AP and d is the common difference of successive numbers. Make sure use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\] and use the Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\].
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Atomic Structure: Definition, Models, and Examples

JEE Main 2026 Session 1 Form Correction – Procedure, Fees & Editing Guidelines

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

Collision: Meaning, Types & Examples in Physics

