Find the position of the final image after three successive reflections taking the first reflection on \[{m_1}\] .
A. $ - 12.5{\text{ cm}}$
B. $12.5{\text{ cm}}$
C. $ - 30{\text{ cm}}$
D. $30{\text{ cm}}$
Answer
Verified
119.4k+ views
Hint: The first image will form after being reflected by \[{m_1}\] and this image will behave as an object for the plane mirror. Similarly, the image formed by the plane mirror will behave as an object for the mirror \[{m_1}\] and the reflection of this object from \[{m_1}\] will form the final image.
The position of image by reflection through \[{m_1}\] can be found by using mirror formula which is given by $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$ where $v$ is the distance of image from the mirror, $u$ is the distance of object from the mirror and $f$ is the focal length of the mirror. The distance of an image formed by a plane mirror is the same as the distance of an object but on the opposite side of the mirror.
Complete step by step answer:
Let us first discuss the image formation on three successive reflections.
The first image will form after being reflected by \[{m_1}\] and this image will behave as an object for the plane mirror. Similarly, the image formed by the plane mirror will behave as an object for the mirror \[{m_1}\] and the reflection of this object from \[{m_1}\] will form the final image.
For first reflection on \[{m_1}\], the position of image by reflection through \[{m_1}\] can be found by using mirror formula which is given by $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$ .
Taking the direction of incident rays to be positive,
$u = - 15{\text{ cm}}$ and $f = - \dfrac{{ROC}}{2} = - 10{\text{ cm}}$
Therefore, using mirror formula we have
$\dfrac{1}{v} + \dfrac{1}{{\left( { - 15} \right)}} = \dfrac{1}{{ - 10}}$
On simplifying we have
$v = - 30{\text{ cm}}$
Now, this image will behave as an object for the plane mirror and we know that the distance of the image formed by a plane mirror is the same as the distance of the object but on the opposite side of the mirror.
For second reflection on plane mirror,
$u = - 10{\text{ cm}}$
Therefore, the image distance $v = 10{\text{ cm}}$ .
Now this image will behave as an object for the mirror \[{m_1}\] .
For third reflection on \[{m_1}\] ,
$u = - 50{\text{ cm}}$ and $f = - 10{\text{ cm}}$
Therefore, using mirror formula we have
$\dfrac{1}{v} + \dfrac{1}{{\left( { - 50} \right)}} = \dfrac{1}{{ - 10}}$
On simplifying we have
$v = - 12.5{\text{ cm}}$
Therefore, the position of final image will be $v = - 12.5{\text{ cm}}$
Hence, option A is correct.
Note: The mirror \[{m_1}\] is a concave mirror which is a converging mirror. The rays of light coming from infinity after being reflected by a concave mirror converge to a point between the pole and centre of curvature of the mirror. This point is called focus of the mirror and the distance from the pole of the mirror and focus is called focal length. The radius of curvature of a spherical mirror is twice the focal length.
The position of image by reflection through \[{m_1}\] can be found by using mirror formula which is given by $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$ where $v$ is the distance of image from the mirror, $u$ is the distance of object from the mirror and $f$ is the focal length of the mirror. The distance of an image formed by a plane mirror is the same as the distance of an object but on the opposite side of the mirror.
Complete step by step answer:
Let us first discuss the image formation on three successive reflections.
The first image will form after being reflected by \[{m_1}\] and this image will behave as an object for the plane mirror. Similarly, the image formed by the plane mirror will behave as an object for the mirror \[{m_1}\] and the reflection of this object from \[{m_1}\] will form the final image.
For first reflection on \[{m_1}\], the position of image by reflection through \[{m_1}\] can be found by using mirror formula which is given by $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$ .
Taking the direction of incident rays to be positive,
$u = - 15{\text{ cm}}$ and $f = - \dfrac{{ROC}}{2} = - 10{\text{ cm}}$
Therefore, using mirror formula we have
$\dfrac{1}{v} + \dfrac{1}{{\left( { - 15} \right)}} = \dfrac{1}{{ - 10}}$
On simplifying we have
$v = - 30{\text{ cm}}$
Now, this image will behave as an object for the plane mirror and we know that the distance of the image formed by a plane mirror is the same as the distance of the object but on the opposite side of the mirror.
For second reflection on plane mirror,
$u = - 10{\text{ cm}}$
Therefore, the image distance $v = 10{\text{ cm}}$ .
Now this image will behave as an object for the mirror \[{m_1}\] .
For third reflection on \[{m_1}\] ,
$u = - 50{\text{ cm}}$ and $f = - 10{\text{ cm}}$
Therefore, using mirror formula we have
$\dfrac{1}{v} + \dfrac{1}{{\left( { - 50} \right)}} = \dfrac{1}{{ - 10}}$
On simplifying we have
$v = - 12.5{\text{ cm}}$
Therefore, the position of final image will be $v = - 12.5{\text{ cm}}$
Hence, option A is correct.
Note: The mirror \[{m_1}\] is a concave mirror which is a converging mirror. The rays of light coming from infinity after being reflected by a concave mirror converge to a point between the pole and centre of curvature of the mirror. This point is called focus of the mirror and the distance from the pole of the mirror and focus is called focal length. The radius of curvature of a spherical mirror is twice the focal length.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs