
Find the number of atoms present in 100 grams of sodium:
(A) $2.6182 \times {10^{23}}$
(B) $0.6182 \times {10^{24}}$
(C) $2.6182 \times {10^{24}}$
(D) $2.6182 \times {10^{20}}$
Answer
220.8k+ views
Hint: One mole of any particle is equal to $6.022 \times {10^{23}}$ particles. This number is called the Avogadro’s number.
Complete step-by-step answer: The given mass of sodium (Na) in grams ${\text{ = 100g}}$
We need to find the number of atoms in 100 grams of sodium (Na).
We know that the atomic mass of sodium (Na) is equal to 23 grams. Now from the mole concept, we know that Gram atomic mass = 1 gm atom $ = 6.022 \times {10^{23}}$ atoms.
So, according to the mole concept, 23 grams of sodium (Na) contains $6.022 \times {10^{23}}$ number of atoms. Thus, 1 g of sodium (Na) will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}}$ atoms.
Therefore, 100 g of sodium will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}} \times 100$ number of atoms.
$ = 2.6182 \times {10^{24}}$ number of atoms.
Therefore, option (A), option (B) and option (D) are not correct. So, the correct option is (C).
Additional information: (1) Molecular weight refers to the average relative weight of an element or a molecule as compared to the weight of a ${{\text{C}}^{{\text{12}}}}$carbon atom taken as 12 on the atomic mass unit scale. The molecular weight of any substance can be calculated by adding the atomic weights of all its constituent atoms.
(2) Gram molecular weight of a substance refers to the molecular weight of that substance (in amu) in grams, i.e., it is the weight in grams which is numerically equal to its molecular weight.
(3) According to the mole concept, a mole represents $6.022 \times {10^{23}}$ particles irrespective of their nature. The amount of matter having this Avogadro’s number of particles represents one mole of that species.
Note: The mole concept can also be applied to calculate the number of molecules in the given mass of a substance. According to the mole concept, gram molecular mass will be equal to the Avogadro’s number of molecules. So the number of molecules in 1 g of the substance can be calculated and from this, the number of molecules in the given mass of that substance can also be determined.
Complete step-by-step answer: The given mass of sodium (Na) in grams ${\text{ = 100g}}$
We need to find the number of atoms in 100 grams of sodium (Na).
We know that the atomic mass of sodium (Na) is equal to 23 grams. Now from the mole concept, we know that Gram atomic mass = 1 gm atom $ = 6.022 \times {10^{23}}$ atoms.
So, according to the mole concept, 23 grams of sodium (Na) contains $6.022 \times {10^{23}}$ number of atoms. Thus, 1 g of sodium (Na) will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}}$ atoms.
Therefore, 100 g of sodium will contain $ = \dfrac{{6.022 \times {{10}^{23}}}}{{23}} \times 100$ number of atoms.
$ = 2.6182 \times {10^{24}}$ number of atoms.
Therefore, option (A), option (B) and option (D) are not correct. So, the correct option is (C).
Additional information: (1) Molecular weight refers to the average relative weight of an element or a molecule as compared to the weight of a ${{\text{C}}^{{\text{12}}}}$carbon atom taken as 12 on the atomic mass unit scale. The molecular weight of any substance can be calculated by adding the atomic weights of all its constituent atoms.
(2) Gram molecular weight of a substance refers to the molecular weight of that substance (in amu) in grams, i.e., it is the weight in grams which is numerically equal to its molecular weight.
(3) According to the mole concept, a mole represents $6.022 \times {10^{23}}$ particles irrespective of their nature. The amount of matter having this Avogadro’s number of particles represents one mole of that species.
Note: The mole concept can also be applied to calculate the number of molecules in the given mass of a substance. According to the mole concept, gram molecular mass will be equal to the Avogadro’s number of molecules. So the number of molecules in 1 g of the substance can be calculated and from this, the number of molecules in the given mass of that substance can also be determined.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

