
Find the frequency of the wave that produces 3 crests and 2 troughs in 2 ms.
A. 1250 Hz
B. 500 Hz
C. 800 Hz
D. 750 Hz
Answer
218.4k+ views
Hint: The period of a wave refers to the time taken to complete one cycle. One cycle corresponds to one crest and one trough i.e., one wavelength. The frequency of the wave will be the reciprocal of the wave period.
Formula Used:
1. Period of a wave is given by, $T = \dfrac{t}{n}$ where $t$ is the time taken to complete $n$ number of cycles.
2. The frequency of a wave is given by, $f = \dfrac{1}{T}$ where $T$ is the period of the wave.
Complete step by step answer:
Step 1: Sketch a rough figure of the source wave and list its features.

The number of crests produced is 3 and the number of troughs produced is 2 in a time of 2 ms.
One crest and one trough can be considered to constitute one cycle. Here two crests and two troughs will then constitute two cycles and the remaining crest will constitute a half cycle. So a total of 2.5 cycles are produced in a given time of 2 ms.
Step 2: Calculate the period of the wave.
Period of the source wave is given by, $T = \dfrac{t}{n}$ --------- (1)
where $t$ is the time taken to complete $n$ number of cycles.
Substituting for $t = 2{\text{ms}}$ and $n = 2.5$ in equation (1) we get, $T = \dfrac{{0.002}}{{2.5}}800{\text{s}}$
So, the period of the wave is $T = 800{\text{s}}$ .
Step 3: Find the frequency of the wave using its period.
The frequency of a wave is given by, $f = \dfrac{1}{T}$ --------- (2) where $T$ is the period of the wave.
Substituting for $T = 800{\text{s}}$ in equation (2) we get, $f = \dfrac{1}{{800}} = 1250{\text{Hz}}$
$\therefore $ the frequency of the source wave is $f = 1250{\text{Hz}}$. So, the correct option is A.
Note: Frequency of a wave refers to the number of cycles completed in one second and so will be inversely proportional to the wave period. The unit of the wave period is seconds. So, while substituting the value for $t$ in equation (1) make sure that it is expressed in seconds as well. If not necessary conversion must be done. Here, $t = 2{\text{ms}}$ is converted to $t = 2 \times {10^{ - 3}}{\text{s}} = 0.002{\text{s}}$ and substituted in equation (1).
Formula Used:
1. Period of a wave is given by, $T = \dfrac{t}{n}$ where $t$ is the time taken to complete $n$ number of cycles.
2. The frequency of a wave is given by, $f = \dfrac{1}{T}$ where $T$ is the period of the wave.
Complete step by step answer:
Step 1: Sketch a rough figure of the source wave and list its features.

The number of crests produced is 3 and the number of troughs produced is 2 in a time of 2 ms.
One crest and one trough can be considered to constitute one cycle. Here two crests and two troughs will then constitute two cycles and the remaining crest will constitute a half cycle. So a total of 2.5 cycles are produced in a given time of 2 ms.
Step 2: Calculate the period of the wave.
Period of the source wave is given by, $T = \dfrac{t}{n}$ --------- (1)
where $t$ is the time taken to complete $n$ number of cycles.
Substituting for $t = 2{\text{ms}}$ and $n = 2.5$ in equation (1) we get, $T = \dfrac{{0.002}}{{2.5}}800{\text{s}}$
So, the period of the wave is $T = 800{\text{s}}$ .
Step 3: Find the frequency of the wave using its period.
The frequency of a wave is given by, $f = \dfrac{1}{T}$ --------- (2) where $T$ is the period of the wave.
Substituting for $T = 800{\text{s}}$ in equation (2) we get, $f = \dfrac{1}{{800}} = 1250{\text{Hz}}$
$\therefore $ the frequency of the source wave is $f = 1250{\text{Hz}}$. So, the correct option is A.
Note: Frequency of a wave refers to the number of cycles completed in one second and so will be inversely proportional to the wave period. The unit of the wave period is seconds. So, while substituting the value for $t$ in equation (1) make sure that it is expressed in seconds as well. If not necessary conversion must be done. Here, $t = 2{\text{ms}}$ is converted to $t = 2 \times {10^{ - 3}}{\text{s}} = 0.002{\text{s}}$ and substituted in equation (1).
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

