
Find the following squares using identities.
(i) \[{(b - 7)^2}\]
(ii) ${(xy + 3z)^2}$
(iii) ${(6{x^2} - 5y)^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
(v) ${(0.4p - 0.5q)^2}$
(vi) ${(2xy + 5y)^2}$
Answer
214.5k+ views
Hint: In the question itself it is said to use identities for finding the squares. There are algebraic identities for ${(a + b)^2}$ and ${(a - b)^2}$. Using these and simplifying we can find the answers.
Useful formula:
For any $a,b$ we have these identities.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Complete step by step solution:
Here we are given six questions to find the square using algebraic identities.
We can do one by one.
(i) \[{(b - 7)^2}\]
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = b,b = 7$
$ \Rightarrow {(b - 7)^2} = {b^2} - 2 \times b \times 7 + {7^2}$
Simplifying we get,
$ \Rightarrow {(b - 7)^2} = {b^2} - 14b + 49$
(ii) ${(xy + 3z)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = xy,b = 3z$
${(xy + 3z)^2} = {(xy)^2} + 2 \times xy \times 3z + {(3z)^2}$
Simplifying we get,
$ \Rightarrow {(xy + 3z)^2} = {x^2}{y^2} + 6xyz + 9{z^2}$
(iii) ${(6{x^2} - 5y)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 6{x^2},b = 5y$
${(6{x^2} - 5y)^2} = {(6{x^2})^2} - 2 \times 6{x^2} \times 5{y^{}} + {(5y)^2}$
Simplifying we get,
${(6{x^2} - 5y)^2} = 36{x^4} - 60{x^2}{y^{}} + 25{y^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = \dfrac{2}{3}m,b = \dfrac{3}{2}n$
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = {(\dfrac{2}{3}m)^2} + 2 \times \dfrac{2}{3}m \times \dfrac{3}{2}n + {(\dfrac{3}{2}n)^2}$
Simplifying we get,
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = \dfrac{4}{9}{m^2} + 2mn + \dfrac{9}{4}{n^2}$
(v) ${(0.4p - 0.5q)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 0.4p,b = 0.5q$
${(0.4p - 0.5q)^2} = {(0.4p)^2} - 2 \times 0.4p \times 0.5q + {(0.5q)^2}$
Simplifying we get,
${(0.4p - 0.5q)^2} = 0.16{p^2} - 0.4pq + 0.25{q^2}$
(vi) ${(2xy + 5y)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = 2xym,b = 5y$
${(2xy + 5y)^2} = {(2xy)^2} + 2 \times 2xy \times 5y + {(5y)^2}$
Simplifying we get,
${(2xy + 5y)^2} = 4{x^2}{y^2} + 20x{y^2} + 25{y^2}$
$ \Rightarrow {(2xy + 5y)^2} = {y^2}(4{x^2} + 20x + 25)$
Additional information:These identities can be extended to any number of terms like ${(a + b + c)^2}$ by taking two terms together at a time.
Note: We can possibly make a mistake in cases when the terms itself are squares like in question (iii). In that case, squaring the term will lead to fourth power. Also these two identities can be united. We have $a - b = a + ( - b)$. So instead of the second identity we can simply replace $b$ by $ - b$ in the first identity.
Useful formula:
For any $a,b$ we have these identities.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Complete step by step solution:
Here we are given six questions to find the square using algebraic identities.
We can do one by one.
(i) \[{(b - 7)^2}\]
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = b,b = 7$
$ \Rightarrow {(b - 7)^2} = {b^2} - 2 \times b \times 7 + {7^2}$
Simplifying we get,
$ \Rightarrow {(b - 7)^2} = {b^2} - 14b + 49$
(ii) ${(xy + 3z)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = xy,b = 3z$
${(xy + 3z)^2} = {(xy)^2} + 2 \times xy \times 3z + {(3z)^2}$
Simplifying we get,
$ \Rightarrow {(xy + 3z)^2} = {x^2}{y^2} + 6xyz + 9{z^2}$
(iii) ${(6{x^2} - 5y)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 6{x^2},b = 5y$
${(6{x^2} - 5y)^2} = {(6{x^2})^2} - 2 \times 6{x^2} \times 5{y^{}} + {(5y)^2}$
Simplifying we get,
${(6{x^2} - 5y)^2} = 36{x^4} - 60{x^2}{y^{}} + 25{y^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = \dfrac{2}{3}m,b = \dfrac{3}{2}n$
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = {(\dfrac{2}{3}m)^2} + 2 \times \dfrac{2}{3}m \times \dfrac{3}{2}n + {(\dfrac{3}{2}n)^2}$
Simplifying we get,
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = \dfrac{4}{9}{m^2} + 2mn + \dfrac{9}{4}{n^2}$
(v) ${(0.4p - 0.5q)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 0.4p,b = 0.5q$
${(0.4p - 0.5q)^2} = {(0.4p)^2} - 2 \times 0.4p \times 0.5q + {(0.5q)^2}$
Simplifying we get,
${(0.4p - 0.5q)^2} = 0.16{p^2} - 0.4pq + 0.25{q^2}$
(vi) ${(2xy + 5y)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = 2xym,b = 5y$
${(2xy + 5y)^2} = {(2xy)^2} + 2 \times 2xy \times 5y + {(5y)^2}$
Simplifying we get,
${(2xy + 5y)^2} = 4{x^2}{y^2} + 20x{y^2} + 25{y^2}$
$ \Rightarrow {(2xy + 5y)^2} = {y^2}(4{x^2} + 20x + 25)$
Additional information:These identities can be extended to any number of terms like ${(a + b + c)^2}$ by taking two terms together at a time.
Note: We can possibly make a mistake in cases when the terms itself are squares like in question (iii). In that case, squaring the term will lead to fourth power. Also these two identities can be united. We have $a - b = a + ( - b)$. So instead of the second identity we can simply replace $b$ by $ - b$ in the first identity.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

