
Find the following squares using identities.
(i) \[{(b - 7)^2}\]
(ii) ${(xy + 3z)^2}$
(iii) ${(6{x^2} - 5y)^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
(v) ${(0.4p - 0.5q)^2}$
(vi) ${(2xy + 5y)^2}$
Answer
206.1k+ views
Hint: In the question itself it is said to use identities for finding the squares. There are algebraic identities for ${(a + b)^2}$ and ${(a - b)^2}$. Using these and simplifying we can find the answers.
Useful formula:
For any $a,b$ we have these identities.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Complete step by step solution:
Here we are given six questions to find the square using algebraic identities.
We can do one by one.
(i) \[{(b - 7)^2}\]
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = b,b = 7$
$ \Rightarrow {(b - 7)^2} = {b^2} - 2 \times b \times 7 + {7^2}$
Simplifying we get,
$ \Rightarrow {(b - 7)^2} = {b^2} - 14b + 49$
(ii) ${(xy + 3z)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = xy,b = 3z$
${(xy + 3z)^2} = {(xy)^2} + 2 \times xy \times 3z + {(3z)^2}$
Simplifying we get,
$ \Rightarrow {(xy + 3z)^2} = {x^2}{y^2} + 6xyz + 9{z^2}$
(iii) ${(6{x^2} - 5y)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 6{x^2},b = 5y$
${(6{x^2} - 5y)^2} = {(6{x^2})^2} - 2 \times 6{x^2} \times 5{y^{}} + {(5y)^2}$
Simplifying we get,
${(6{x^2} - 5y)^2} = 36{x^4} - 60{x^2}{y^{}} + 25{y^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = \dfrac{2}{3}m,b = \dfrac{3}{2}n$
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = {(\dfrac{2}{3}m)^2} + 2 \times \dfrac{2}{3}m \times \dfrac{3}{2}n + {(\dfrac{3}{2}n)^2}$
Simplifying we get,
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = \dfrac{4}{9}{m^2} + 2mn + \dfrac{9}{4}{n^2}$
(v) ${(0.4p - 0.5q)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 0.4p,b = 0.5q$
${(0.4p - 0.5q)^2} = {(0.4p)^2} - 2 \times 0.4p \times 0.5q + {(0.5q)^2}$
Simplifying we get,
${(0.4p - 0.5q)^2} = 0.16{p^2} - 0.4pq + 0.25{q^2}$
(vi) ${(2xy + 5y)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = 2xym,b = 5y$
${(2xy + 5y)^2} = {(2xy)^2} + 2 \times 2xy \times 5y + {(5y)^2}$
Simplifying we get,
${(2xy + 5y)^2} = 4{x^2}{y^2} + 20x{y^2} + 25{y^2}$
$ \Rightarrow {(2xy + 5y)^2} = {y^2}(4{x^2} + 20x + 25)$
Additional information:These identities can be extended to any number of terms like ${(a + b + c)^2}$ by taking two terms together at a time.
Note: We can possibly make a mistake in cases when the terms itself are squares like in question (iii). In that case, squaring the term will lead to fourth power. Also these two identities can be united. We have $a - b = a + ( - b)$. So instead of the second identity we can simply replace $b$ by $ - b$ in the first identity.
Useful formula:
For any $a,b$ we have these identities.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Complete step by step solution:
Here we are given six questions to find the square using algebraic identities.
We can do one by one.
(i) \[{(b - 7)^2}\]
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = b,b = 7$
$ \Rightarrow {(b - 7)^2} = {b^2} - 2 \times b \times 7 + {7^2}$
Simplifying we get,
$ \Rightarrow {(b - 7)^2} = {b^2} - 14b + 49$
(ii) ${(xy + 3z)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = xy,b = 3z$
${(xy + 3z)^2} = {(xy)^2} + 2 \times xy \times 3z + {(3z)^2}$
Simplifying we get,
$ \Rightarrow {(xy + 3z)^2} = {x^2}{y^2} + 6xyz + 9{z^2}$
(iii) ${(6{x^2} - 5y)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 6{x^2},b = 5y$
${(6{x^2} - 5y)^2} = {(6{x^2})^2} - 2 \times 6{x^2} \times 5{y^{}} + {(5y)^2}$
Simplifying we get,
${(6{x^2} - 5y)^2} = 36{x^4} - 60{x^2}{y^{}} + 25{y^2}$
(iv) ${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = \dfrac{2}{3}m,b = \dfrac{3}{2}n$
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = {(\dfrac{2}{3}m)^2} + 2 \times \dfrac{2}{3}m \times \dfrac{3}{2}n + {(\dfrac{3}{2}n)^2}$
Simplifying we get,
${(\dfrac{2}{3}m + \dfrac{3}{2}n)^2} = \dfrac{4}{9}{m^2} + 2mn + \dfrac{9}{4}{n^2}$
(v) ${(0.4p - 0.5q)^2}$
Here we can use our second identity.
${(a - b)^2} = {a^2} - 2ab + {b^2} - - - (ii)$
Comparing with the question we have, $a = 0.4p,b = 0.5q$
${(0.4p - 0.5q)^2} = {(0.4p)^2} - 2 \times 0.4p \times 0.5q + {(0.5q)^2}$
Simplifying we get,
${(0.4p - 0.5q)^2} = 0.16{p^2} - 0.4pq + 0.25{q^2}$
(vi) ${(2xy + 5y)^2}$
Here we can use our first identity.
${(a + b)^2} = {a^2} + 2ab + {b^2} - - - (i)$
Comparing with the question we have, $a = 2xym,b = 5y$
${(2xy + 5y)^2} = {(2xy)^2} + 2 \times 2xy \times 5y + {(5y)^2}$
Simplifying we get,
${(2xy + 5y)^2} = 4{x^2}{y^2} + 20x{y^2} + 25{y^2}$
$ \Rightarrow {(2xy + 5y)^2} = {y^2}(4{x^2} + 20x + 25)$
Additional information:These identities can be extended to any number of terms like ${(a + b + c)^2}$ by taking two terms together at a time.
Note: We can possibly make a mistake in cases when the terms itself are squares like in question (iii). In that case, squaring the term will lead to fourth power. Also these two identities can be united. We have $a - b = a + ( - b)$. So instead of the second identity we can simply replace $b$ by $ - b$ in the first identity.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Average and RMS Value in Physics: Formula, Comparison & Application

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 5 Linear Inequalities 2025-26

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions For Class 11 Maths Chapter 14 Probability - 2025-26

