
Find the focal length of a meniscus lens which is made of a material of refractive index ${\mu _2}$ for ${\mu _1} < {\mu _2} < {\mu _3}$ when light is incident on it. The radius of curvature of both surfaces is $R.$ It has two different media of refractive indices ${\mu _1}$ and ${\mu _3}$ respectively on its two sides.


Answer
162k+ views
- Hint:- Use the lens maker’s formula,
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
where, $u$ is the distance of object,
$v$ is the distance of image and
$R$ is the radius of curvature
Now, find the object distance for the first surface using this lens maker’s formula.
Next, find the image distance for the second surface using the lens maker’s formula.
Complete Step by Step Solution: -
We will use the Lens Maker’s Formula which is –
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Let the refractive index of first surface and second surface be ${\mu _1}$ and ${\mu _2}$ respectively
Therefore, for first surface –
The distance of the object is at $u$ and image distance is at infinite.
$\dfrac{{{\mu _2}}}{u} - \dfrac{{{\mu _1}}}{\infty } = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
$\dfrac{{{\mu _2}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Finding the object distance $u$
Therefore, by transposition and cross – multiplication, we get –
$u = \dfrac{{{\mu _2}R}}{{{\mu _2} - {\mu _1}}} \cdots (1)$
This will act as an object for second refraction.
Therefore, for second surface
$u = {v_2}$
Now, in lens maker’s formula, we get
$\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{v_2}}} = \dfrac{{{\mu _3} - {\mu _2}}}{R} \cdots (2)$
Because, $u = {v_2}$
So, putting the value of $u$ from equation $(1)$ in equation $(2)$
$
\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{\mu _2}R}}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\therefore \dfrac{{{\mu _3}}}{v} - \dfrac{1}{R}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _2} + {\mu _2} - {\mu _1}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _1}}}{R} \\
$
Now, finding the expression for $v$
$v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for ${\mu _1} < {\mu _2} < {\mu _3}$ is –
Let the focal length be $f$
$\therefore f = v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for this meniscus length is $\dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$.
Note:-The lens which has two spherical curved surfaces is called Meniscus lens. It is convex on one side and concave on the other side. The lens provides a smaller beam diameter in order to reduce the beam waste and spherical aberration.
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
where, $u$ is the distance of object,
$v$ is the distance of image and
$R$ is the radius of curvature
Now, find the object distance for the first surface using this lens maker’s formula.
Next, find the image distance for the second surface using the lens maker’s formula.
Complete Step by Step Solution: -
We will use the Lens Maker’s Formula which is –
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Let the refractive index of first surface and second surface be ${\mu _1}$ and ${\mu _2}$ respectively
Therefore, for first surface –
The distance of the object is at $u$ and image distance is at infinite.
$\dfrac{{{\mu _2}}}{u} - \dfrac{{{\mu _1}}}{\infty } = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
$\dfrac{{{\mu _2}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Finding the object distance $u$
Therefore, by transposition and cross – multiplication, we get –
$u = \dfrac{{{\mu _2}R}}{{{\mu _2} - {\mu _1}}} \cdots (1)$
This will act as an object for second refraction.
Therefore, for second surface
$u = {v_2}$
Now, in lens maker’s formula, we get
$\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{v_2}}} = \dfrac{{{\mu _3} - {\mu _2}}}{R} \cdots (2)$
Because, $u = {v_2}$
So, putting the value of $u$ from equation $(1)$ in equation $(2)$
$
\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{\mu _2}R}}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\therefore \dfrac{{{\mu _3}}}{v} - \dfrac{1}{R}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _2} + {\mu _2} - {\mu _1}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _1}}}{R} \\
$
Now, finding the expression for $v$
$v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for ${\mu _1} < {\mu _2} < {\mu _3}$ is –
Let the focal length be $f$
$\therefore f = v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for this meniscus length is $\dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$.
Note:-The lens which has two spherical curved surfaces is called Meniscus lens. It is convex on one side and concave on the other side. The lens provides a smaller beam diameter in order to reduce the beam waste and spherical aberration.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Wheatstone Bridge for JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE
