
Find the focal length of a meniscus lens which is made of a material of refractive index ${\mu _2}$ for ${\mu _1} < {\mu _2} < {\mu _3}$ when light is incident on it. The radius of curvature of both surfaces is $R.$ It has two different media of refractive indices ${\mu _1}$ and ${\mu _3}$ respectively on its two sides.


Answer
232.8k+ views
- Hint:- Use the lens maker’s formula,
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
where, $u$ is the distance of object,
$v$ is the distance of image and
$R$ is the radius of curvature
Now, find the object distance for the first surface using this lens maker’s formula.
Next, find the image distance for the second surface using the lens maker’s formula.
Complete Step by Step Solution: -
We will use the Lens Maker’s Formula which is –
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Let the refractive index of first surface and second surface be ${\mu _1}$ and ${\mu _2}$ respectively
Therefore, for first surface –
The distance of the object is at $u$ and image distance is at infinite.
$\dfrac{{{\mu _2}}}{u} - \dfrac{{{\mu _1}}}{\infty } = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
$\dfrac{{{\mu _2}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Finding the object distance $u$
Therefore, by transposition and cross – multiplication, we get –
$u = \dfrac{{{\mu _2}R}}{{{\mu _2} - {\mu _1}}} \cdots (1)$
This will act as an object for second refraction.
Therefore, for second surface
$u = {v_2}$
Now, in lens maker’s formula, we get
$\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{v_2}}} = \dfrac{{{\mu _3} - {\mu _2}}}{R} \cdots (2)$
Because, $u = {v_2}$
So, putting the value of $u$ from equation $(1)$ in equation $(2)$
$
\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{\mu _2}R}}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\therefore \dfrac{{{\mu _3}}}{v} - \dfrac{1}{R}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _2} + {\mu _2} - {\mu _1}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _1}}}{R} \\
$
Now, finding the expression for $v$
$v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for ${\mu _1} < {\mu _2} < {\mu _3}$ is –
Let the focal length be $f$
$\therefore f = v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for this meniscus length is $\dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$.
Note:-The lens which has two spherical curved surfaces is called Meniscus lens. It is convex on one side and concave on the other side. The lens provides a smaller beam diameter in order to reduce the beam waste and spherical aberration.
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
where, $u$ is the distance of object,
$v$ is the distance of image and
$R$ is the radius of curvature
Now, find the object distance for the first surface using this lens maker’s formula.
Next, find the image distance for the second surface using the lens maker’s formula.
Complete Step by Step Solution: -
We will use the Lens Maker’s Formula which is –
$\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Let the refractive index of first surface and second surface be ${\mu _1}$ and ${\mu _2}$ respectively
Therefore, for first surface –
The distance of the object is at $u$ and image distance is at infinite.
$\dfrac{{{\mu _2}}}{u} - \dfrac{{{\mu _1}}}{\infty } = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
$\dfrac{{{\mu _2}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}$
Finding the object distance $u$
Therefore, by transposition and cross – multiplication, we get –
$u = \dfrac{{{\mu _2}R}}{{{\mu _2} - {\mu _1}}} \cdots (1)$
This will act as an object for second refraction.
Therefore, for second surface
$u = {v_2}$
Now, in lens maker’s formula, we get
$\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{v_2}}} = \dfrac{{{\mu _3} - {\mu _2}}}{R} \cdots (2)$
Because, $u = {v_2}$
So, putting the value of $u$ from equation $(1)$ in equation $(2)$
$
\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{\mu _2}R}}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\therefore \dfrac{{{\mu _3}}}{v} - \dfrac{1}{R}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _2} + {\mu _2} - {\mu _1}}}{R} \\
\dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _1}}}{R} \\
$
Now, finding the expression for $v$
$v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for ${\mu _1} < {\mu _2} < {\mu _3}$ is –
Let the focal length be $f$
$\therefore f = v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$
So, the focal length for this meniscus length is $\dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}$.
Note:-The lens which has two spherical curved surfaces is called Meniscus lens. It is convex on one side and concave on the other side. The lens provides a smaller beam diameter in order to reduce the beam waste and spherical aberration.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

