
Find the equation of a circle which passes through origin and cuts off intercepts $ - 2$ and $3$ from the axes.
Answer
163.5k+ views
Hint: Given, circle which passes through origin and cuts off intercepts $ - 2$ and $3$. We have to find the equation of the circle. First, we will put the given points in the general equation of the circle to find the unknown variable. After calculating those unknown we will put them in the general equation to get the required equation of the circle.
Formula Used: General equation of circle:
${x^2} + {y^2} + 2gx + 2fy + c = 0$
Complete step by step solution: A circle is a closed curve that extends outward from a set point known as the centre, with each point on the curve being equally spaced from the centre. ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ is the equation for a circle having a centre (h, k) and $r$ radius.
This is the equation's standard form. Thus, we can quickly determine the equation of a circle if we know its radius and centre coordinates.
Given, circle which passes through origin and cuts off intercepts $ - 2$ and $3$.
We know the general equation of circle.
${x^2} + {y^2} + 2gx + 2fy + c = 0$ (1)
Clearly, given the circle passes through points
$C\left( {0,0} \right),\,P( - 2,0),\,Q(0,3)$
Putting the point C that is $x = 0$ and $y = 0$ in the equation (1)
$0 + 0 + 0 + 0 + c = 0$
$ \Rightarrow c = 0$
Putting the point P that is $x = - 2$ and $y = 0$ in the equation (1)
${( - 2)^2} + 0 + 2( - 2)g + 0 = 0$
$4 - 4g = 0$
Shifting 4 to other side.
$4g = 4$
Dividing both sides with 4
$g = 1$
Putting point Q that is $x = 0$ and $y = 3$ in the equation (1)
$0 + {(3)^2} + 0 + 2(3)f = 0$
$9 + 6f = 0$
Shifting 9 to other side
$6f = - 9$
Dividing both sides with 6
$f = - \dfrac{3}{2}$
Putting value of g, f and c in the equation (1)
${x^2} + {y^2} + 2(1)x + 2\left( {\dfrac{{ - 3}}{2}} \right)y + 0 = 0$
${x^2} + {y^2} + 2x - 3x = 0$
Hence, ${x^2} + {y^2} + 2x - 3x = 0$ is the required equation of the circle.
Note: Students should solve questions carefully to avoid any calculation error or any conceptual error. They should pay attention to the information which is given in the question. Ans should use the general equation of the circle that is ${x^2} + {y^2} + 2gx + 2fy + c = 0$ to get the correct answer without any difficulty.
Formula Used: General equation of circle:
${x^2} + {y^2} + 2gx + 2fy + c = 0$
Complete step by step solution: A circle is a closed curve that extends outward from a set point known as the centre, with each point on the curve being equally spaced from the centre. ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ is the equation for a circle having a centre (h, k) and $r$ radius.
This is the equation's standard form. Thus, we can quickly determine the equation of a circle if we know its radius and centre coordinates.
Given, circle which passes through origin and cuts off intercepts $ - 2$ and $3$.
We know the general equation of circle.
${x^2} + {y^2} + 2gx + 2fy + c = 0$ (1)
Clearly, given the circle passes through points
$C\left( {0,0} \right),\,P( - 2,0),\,Q(0,3)$
Putting the point C that is $x = 0$ and $y = 0$ in the equation (1)
$0 + 0 + 0 + 0 + c = 0$
$ \Rightarrow c = 0$
Putting the point P that is $x = - 2$ and $y = 0$ in the equation (1)
${( - 2)^2} + 0 + 2( - 2)g + 0 = 0$
$4 - 4g = 0$
Shifting 4 to other side.
$4g = 4$
Dividing both sides with 4
$g = 1$
Putting point Q that is $x = 0$ and $y = 3$ in the equation (1)
$0 + {(3)^2} + 0 + 2(3)f = 0$
$9 + 6f = 0$
Shifting 9 to other side
$6f = - 9$
Dividing both sides with 6
$f = - \dfrac{3}{2}$
Putting value of g, f and c in the equation (1)
${x^2} + {y^2} + 2(1)x + 2\left( {\dfrac{{ - 3}}{2}} \right)y + 0 = 0$
${x^2} + {y^2} + 2x - 3x = 0$
Hence, ${x^2} + {y^2} + 2x - 3x = 0$ is the required equation of the circle.
Note: Students should solve questions carefully to avoid any calculation error or any conceptual error. They should pay attention to the information which is given in the question. Ans should use the general equation of the circle that is ${x^2} + {y^2} + 2gx + 2fy + c = 0$ to get the correct answer without any difficulty.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
