
Find the emf of the circuit.

Answer
217.5k+ views
Hint: Electromotive force, emf, electrical energy per unit, which is transmitted by a power source, such as a generator or battery. The electrical charge in the generator is transferred from one form to the other as the unit operates on the electrical charge. One terminal is charged positively, the other is charged negatively. The electric power is the work carried out on an electrical charge unit or the energy produced by the electrical charge unit. Any energy source able to move electric load through a circuit is characteristic of electrical force.
Complete step by Step Solution: In electromagnetic induction, emf, the electromagnetic work that will take place at an electrical charge (electron in this instance) as it is moving around the ring, can be described around the closed loop of conductor. The scale-scale field of the electric potential is not specified because of a rotating electrical vector field for a time-varying magnetic flux that connects a circle, but an emf nevertheless acts as a virtual electrical potential around the circle.
Since the cells are connected in series, therefore,
${R_ {emf}} = 1 + 2 + 3$
${R_ {emf}} = 6V$
Resultant emf is $6V$ which is in parallel with the other battery
Hence, emf of the circuit will be $6V$
Note: The generation by a time-dependent magnetic field of a circulating electric field is electro-magnetic induction. Time-dependent magnetic fields can be produced either by shifting a magnet relative to a circuit, shifting a circuit relative to another circuit or changing an electrical current on a permanent circuit (at least one of them is expected to be holding an electrical current). The effect of modifying the electric power on the circuit itself is called auto-induction; it is known as reciprocal induction on another circuit. The electromagnetically induced emf is solely calculated for a given circuit by the rate of change of the magnetic flux by the circuit in compliance with Faraday’s induction laws. As flux connexions are modified, an emf is induced into a coil or conductor.
Complete step by Step Solution: In electromagnetic induction, emf, the electromagnetic work that will take place at an electrical charge (electron in this instance) as it is moving around the ring, can be described around the closed loop of conductor. The scale-scale field of the electric potential is not specified because of a rotating electrical vector field for a time-varying magnetic flux that connects a circle, but an emf nevertheless acts as a virtual electrical potential around the circle.
Since the cells are connected in series, therefore,
${R_ {emf}} = 1 + 2 + 3$
${R_ {emf}} = 6V$
Resultant emf is $6V$ which is in parallel with the other battery
Hence, emf of the circuit will be $6V$
Note: The generation by a time-dependent magnetic field of a circulating electric field is electro-magnetic induction. Time-dependent magnetic fields can be produced either by shifting a magnet relative to a circuit, shifting a circuit relative to another circuit or changing an electrical current on a permanent circuit (at least one of them is expected to be holding an electrical current). The effect of modifying the electric power on the circuit itself is called auto-induction; it is known as reciprocal induction on another circuit. The electromagnetically induced emf is solely calculated for a given circuit by the rate of change of the magnetic flux by the circuit in compliance with Faraday’s induction laws. As flux connexions are modified, an emf is induced into a coil or conductor.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

