
Find the electric field \[E\] at point \[P\] (as shown in the figure) on the perpendicular bisector of a uniformly charged thin wire of length \[L\] carrying a charge \[Q\]. The distance of the point \[P\] from the center of the rod is \[a = \left( {\frac{{\sqrt 3 }}{2}} \right)L\]

A. \[\frac{Q}{{2\sqrt 3 \pi {\varepsilon _o}{L^2}}}\]
B. \[\frac{{\sqrt 3 Q}}{{4\pi {\varepsilon _0}{L^2}}}\]
C. \[\frac{Q}{{3\pi {\varepsilon _o}{L^2}}}\]
D. \[\frac{Q}{{4\pi {\varepsilon _o}{L^2}}}\]
Answer
161.4k+ views
Hint: Write down the potential resulting from a point charge first. To determine the potential at point \[P\], integration on the line charge must be done. Therefore, choose a wire element \[\left( {dx} \right)\] and calculate its potential using the same methods as for a point charge.
Formula Used:
\[{{\rm{E}}_{{\rm{net }}}} = \frac{{{\rm{K}}\lambda }}{{\rm{r}}}\left( {\sin {\theta _1} + \sin {\theta _2}} \right)\]
Where \[{\theta _1},{\theta _2}\] are angle making with point \[{\rm{P}}\] from end.
Charge per unit length is \[\lambda \]
Complete answer:
We have been given in the question that,
Length of the wire \[ = L\]
Charge in the wire \[ = Q\]
Distance of the point \[P\] from the center of the rod is \[a = \left( {\frac{{\sqrt 3 }}{2}} \right)L\]

From the above diagram, we get
\[\tan \theta = \frac{{{\rm{ Perpendicular }}}}{{{\rm{ Base }}}}\]
Now, we have to observe the diagram and write the values in the above formula, we obtain\[\tan \theta = \frac{{\frac{L}{2}}}{{\frac{{\sqrt 3 }}{2}L}} = \frac{1}{{\sqrt 3 }}\]
On solving the above equation, we get
\[\theta = {30^\circ }\]
Now, we have to find electric field \[E\] at point \[P\]
Now,
\[{E_{net}} = \left( {\frac{{kQ}}{{\frac{{\sqrt 3 {L^2}}}{2}}}} \right)\left( {\sin {{30}^\circ } + \sin {{30}^\circ }} \right)\]
On solving the above equation by multiplying the terms inside the parentheses, we get
\[ = \left( {\frac{{2kQ}}{{\sqrt 3 {L^2}}}} \right)\left( {\frac{1}{2} + \frac{1}{2}} \right)\]
Now, we have to simplify the resultant equation, we have
\[ = \frac{1}{{4\pi {\varepsilon _0}}}\left( {\frac{{2Q}}{{\sqrt 3 {L^2}}}} \right)\]
On canceling the similar terms in the above expression, we get
\[ = \frac{Q}{{2\sqrt 3 \pi {\varepsilon _0}{L^2}}}\]
Where: The net electric field is \[{\rm{E}}\].
The constant is \[{\rm{K}}\].
The charge in the wire is \[{\rm{Q}}\].
The wire's length is \[{\rm{L}}\].
Absolute permittivity is \[{\varepsilon _0}\].
Therefore, the electric field \[E\] at point \[P\] (as shown in the figure) on the perpendicular bisector of a uniformly charged thin wire of length \[L\] carrying a charge \[Q\] is \[\frac{Q}{{2\sqrt 3 \pi {\varepsilon _0}{L^2}}}\].
Hence, the option A is correct.
Note: Students are likely to make mistake in these types of problems. In a brief, it can be claimed that because electric potential is a scalar number, it is zero at all points along the perpendicular bisector. The position of the force on a positive test charge is assumed to equal the position of the field.
Formula Used:
\[{{\rm{E}}_{{\rm{net }}}} = \frac{{{\rm{K}}\lambda }}{{\rm{r}}}\left( {\sin {\theta _1} + \sin {\theta _2}} \right)\]
Where \[{\theta _1},{\theta _2}\] are angle making with point \[{\rm{P}}\] from end.
Charge per unit length is \[\lambda \]
Complete answer:
We have been given in the question that,
Length of the wire \[ = L\]
Charge in the wire \[ = Q\]
Distance of the point \[P\] from the center of the rod is \[a = \left( {\frac{{\sqrt 3 }}{2}} \right)L\]

From the above diagram, we get
\[\tan \theta = \frac{{{\rm{ Perpendicular }}}}{{{\rm{ Base }}}}\]
Now, we have to observe the diagram and write the values in the above formula, we obtain\[\tan \theta = \frac{{\frac{L}{2}}}{{\frac{{\sqrt 3 }}{2}L}} = \frac{1}{{\sqrt 3 }}\]
On solving the above equation, we get
\[\theta = {30^\circ }\]
Now, we have to find electric field \[E\] at point \[P\]
Now,
\[{E_{net}} = \left( {\frac{{kQ}}{{\frac{{\sqrt 3 {L^2}}}{2}}}} \right)\left( {\sin {{30}^\circ } + \sin {{30}^\circ }} \right)\]
On solving the above equation by multiplying the terms inside the parentheses, we get
\[ = \left( {\frac{{2kQ}}{{\sqrt 3 {L^2}}}} \right)\left( {\frac{1}{2} + \frac{1}{2}} \right)\]
Now, we have to simplify the resultant equation, we have
\[ = \frac{1}{{4\pi {\varepsilon _0}}}\left( {\frac{{2Q}}{{\sqrt 3 {L^2}}}} \right)\]
On canceling the similar terms in the above expression, we get
\[ = \frac{Q}{{2\sqrt 3 \pi {\varepsilon _0}{L^2}}}\]
Where: The net electric field is \[{\rm{E}}\].
The constant is \[{\rm{K}}\].
The charge in the wire is \[{\rm{Q}}\].
The wire's length is \[{\rm{L}}\].
Absolute permittivity is \[{\varepsilon _0}\].
Therefore, the electric field \[E\] at point \[P\] (as shown in the figure) on the perpendicular bisector of a uniformly charged thin wire of length \[L\] carrying a charge \[Q\] is \[\frac{Q}{{2\sqrt 3 \pi {\varepsilon _0}{L^2}}}\].
Hence, the option A is correct.
Note: Students are likely to make mistake in these types of problems. In a brief, it can be claimed that because electric potential is a scalar number, it is zero at all points along the perpendicular bisector. The position of the force on a positive test charge is assumed to equal the position of the field.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE
