
Find the definite integral $\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta =$
A. $1$
B. $2$
C. $\dfrac{\pi }{4}$
D. $0$
Answer
232.8k+ views
Hint: In this question, we are to find the given integral. To do this, the properties of the definite integral are applied. By the appropriate property, the integral is to be evaluated.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$ - upper limit.
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given definite integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta $
Here the upper limit is $2\pi $ and the lower limit is $0$.
So, the property we can use is
$\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Consider $f(\theta )=\dfrac{\sin 2\theta }{a-b\cos \theta }$
Then,
$f(2a-x)=f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )}$
But we know that,
$\begin{align}
& \sin (2n\pi -\theta )=-\sin \theta \\
& \cos (2n\pi -\theta )=\cos \theta \\
\end{align}$
So, we get
$\begin{align}
& f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )} \\
& \text{ }=\dfrac{-\sin 2\theta }{a-b\cos \theta } \\
& \text{ }=-f(\theta ) \\
\end{align}$
Therefore, the definite integral of the function is zero.
Thus, the given integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }d\theta }=0$
Option ‘D’ is correct
Note: Here we need to check that the given function is an even or odd function. If the limits are in the form of $a=0;b=2a$, we need to check the given function for $f(2a-x)$. According to the result, the integration is evolved by using the properties of definite integrals.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$ - upper limit.
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given definite integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta $
Here the upper limit is $2\pi $ and the lower limit is $0$.
So, the property we can use is
$\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Consider $f(\theta )=\dfrac{\sin 2\theta }{a-b\cos \theta }$
Then,
$f(2a-x)=f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )}$
But we know that,
$\begin{align}
& \sin (2n\pi -\theta )=-\sin \theta \\
& \cos (2n\pi -\theta )=\cos \theta \\
\end{align}$
So, we get
$\begin{align}
& f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )} \\
& \text{ }=\dfrac{-\sin 2\theta }{a-b\cos \theta } \\
& \text{ }=-f(\theta ) \\
\end{align}$
Therefore, the definite integral of the function is zero.
Thus, the given integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }d\theta }=0$
Option ‘D’ is correct
Note: Here we need to check that the given function is an even or odd function. If the limits are in the form of $a=0;b=2a$, we need to check the given function for $f(2a-x)$. According to the result, the integration is evolved by using the properties of definite integrals.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

