
Find the definite integral $\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta =$
A. $1$
B. $2$
C. $\dfrac{\pi }{4}$
D. $0$
Answer
164.1k+ views
Hint: In this question, we are to find the given integral. To do this, the properties of the definite integral are applied. By the appropriate property, the integral is to be evaluated.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$ - upper limit.
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given definite integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta $
Here the upper limit is $2\pi $ and the lower limit is $0$.
So, the property we can use is
$\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Consider $f(\theta )=\dfrac{\sin 2\theta }{a-b\cos \theta }$
Then,
$f(2a-x)=f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )}$
But we know that,
$\begin{align}
& \sin (2n\pi -\theta )=-\sin \theta \\
& \cos (2n\pi -\theta )=\cos \theta \\
\end{align}$
So, we get
$\begin{align}
& f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )} \\
& \text{ }=\dfrac{-\sin 2\theta }{a-b\cos \theta } \\
& \text{ }=-f(\theta ) \\
\end{align}$
Therefore, the definite integral of the function is zero.
Thus, the given integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }d\theta }=0$
Option ‘D’ is correct
Note: Here we need to check that the given function is an even or odd function. If the limits are in the form of $a=0;b=2a$, we need to check the given function for $f(2a-x)$. According to the result, the integration is evolved by using the properties of definite integrals.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$ - upper limit.
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given definite integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta $
Here the upper limit is $2\pi $ and the lower limit is $0$.
So, the property we can use is
$\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Consider $f(\theta )=\dfrac{\sin 2\theta }{a-b\cos \theta }$
Then,
$f(2a-x)=f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )}$
But we know that,
$\begin{align}
& \sin (2n\pi -\theta )=-\sin \theta \\
& \cos (2n\pi -\theta )=\cos \theta \\
\end{align}$
So, we get
$\begin{align}
& f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )} \\
& \text{ }=\dfrac{-\sin 2\theta }{a-b\cos \theta } \\
& \text{ }=-f(\theta ) \\
\end{align}$
Therefore, the definite integral of the function is zero.
Thus, the given integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }d\theta }=0$
Option ‘D’ is correct
Note: Here we need to check that the given function is an even or odd function. If the limits are in the form of $a=0;b=2a$, we need to check the given function for $f(2a-x)$. According to the result, the integration is evolved by using the properties of definite integrals.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
