
Find the definite integral $\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta =$
A. $1$
B. $2$
C. $\dfrac{\pi }{4}$
D. $0$
Answer
216.6k+ views
Hint: In this question, we are to find the given integral. To do this, the properties of the definite integral are applied. By the appropriate property, the integral is to be evaluated.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$ - upper limit.
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given definite integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta $
Here the upper limit is $2\pi $ and the lower limit is $0$.
So, the property we can use is
$\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Consider $f(\theta )=\dfrac{\sin 2\theta }{a-b\cos \theta }$
Then,
$f(2a-x)=f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )}$
But we know that,
$\begin{align}
& \sin (2n\pi -\theta )=-\sin \theta \\
& \cos (2n\pi -\theta )=\cos \theta \\
\end{align}$
So, we get
$\begin{align}
& f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )} \\
& \text{ }=\dfrac{-\sin 2\theta }{a-b\cos \theta } \\
& \text{ }=-f(\theta ) \\
\end{align}$
Therefore, the definite integral of the function is zero.
Thus, the given integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }d\theta }=0$
Option ‘D’ is correct
Note: Here we need to check that the given function is an even or odd function. If the limits are in the form of $a=0;b=2a$, we need to check the given function for $f(2a-x)$. According to the result, the integration is evolved by using the properties of definite integrals.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$ - upper limit.
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given definite integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }}d\theta $
Here the upper limit is $2\pi $ and the lower limit is $0$.
So, the property we can use is
$\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Consider $f(\theta )=\dfrac{\sin 2\theta }{a-b\cos \theta }$
Then,
$f(2a-x)=f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )}$
But we know that,
$\begin{align}
& \sin (2n\pi -\theta )=-\sin \theta \\
& \cos (2n\pi -\theta )=\cos \theta \\
\end{align}$
So, we get
$\begin{align}
& f(2\pi -\theta )=\dfrac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )} \\
& \text{ }=\dfrac{-\sin 2\theta }{a-b\cos \theta } \\
& \text{ }=-f(\theta ) \\
\end{align}$
Therefore, the definite integral of the function is zero.
Thus, the given integral is
$\int\limits_{0}^{2\pi }{\dfrac{\sin 2\theta }{a-b\cos \theta }d\theta }=0$
Option ‘D’ is correct
Note: Here we need to check that the given function is an even or odd function. If the limits are in the form of $a=0;b=2a$, we need to check the given function for $f(2a-x)$. According to the result, the integration is evolved by using the properties of definite integrals.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
Amortization Calculator – Loan Schedule, EMI & Table

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

