Find the acceleration of the wedge towards the right so that friction does not act on the block.
Answer
Verified
119.7k+ views
Hint: We know that for no frictional force to act on the block the relative motion between the wedge and the block should cease to exist. This means that if the block does not move relative to the wedge then we can say that no frictional force is acting on the block.
Formula Used:
We can find the acceleration of the block by using the mathematical formula given below:
$a = g\tan \theta $
In this mathematical formula $g$ represents the acceleration due to gravity and $\theta $ represents the angle of the wedge.
Complete step by step answer:
In the given numerical problem we have to obtain the acceleration of the wedge in the condition that no amount of frictional force acts between the block and the wedge. To fulfil this condition it is important that the relative motion between the wedge and the block should be nil.
For this to happen, the component of all the pseudo-forces along the slope acting on the block must balance the component of gravitational force along the slope. The pseudo forces can be represented using the figure given below:
The magnitude of the pseudo-forces is equal to the product of the mass of the block and the acceleration of the block.
From the figure, we can clearly say that:
$ma\cos \theta - mg\sin \theta = 0$
Now the angle of the wedge is given as $30^\circ $. Putting this value in the formula for obtaining the acceleration of the wedge, we obtain:
$a = g\tan 30^\circ $
Now, we already know that $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$
Then, substituting this value in the above mathematical expression, we have:
$ \Rightarrow a = \dfrac{g}{{\sqrt 3 }}$
Thus, we find that the acceleration of the wedge towards right so that frictional force does not act on the block is equal to $\dfrac{g}{{\sqrt 3 }}$.
Note: Whenever in any numerical problem it is given that the wedge is accelerating, we have to translate every equation into the frame of reference of the wedge. Then by applying pseudo-force we can solve the numerical by taking into consideration the angle of the wedge.
Formula Used:
We can find the acceleration of the block by using the mathematical formula given below:
$a = g\tan \theta $
In this mathematical formula $g$ represents the acceleration due to gravity and $\theta $ represents the angle of the wedge.
Complete step by step answer:
In the given numerical problem we have to obtain the acceleration of the wedge in the condition that no amount of frictional force acts between the block and the wedge. To fulfil this condition it is important that the relative motion between the wedge and the block should be nil.
For this to happen, the component of all the pseudo-forces along the slope acting on the block must balance the component of gravitational force along the slope. The pseudo forces can be represented using the figure given below:
The magnitude of the pseudo-forces is equal to the product of the mass of the block and the acceleration of the block.
From the figure, we can clearly say that:
$ma\cos \theta - mg\sin \theta = 0$
Now the angle of the wedge is given as $30^\circ $. Putting this value in the formula for obtaining the acceleration of the wedge, we obtain:
$a = g\tan 30^\circ $
Now, we already know that $\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}$
Then, substituting this value in the above mathematical expression, we have:
$ \Rightarrow a = \dfrac{g}{{\sqrt 3 }}$
Thus, we find that the acceleration of the wedge towards right so that frictional force does not act on the block is equal to $\dfrac{g}{{\sqrt 3 }}$.
Note: Whenever in any numerical problem it is given that the wedge is accelerating, we have to translate every equation into the frame of reference of the wedge. Then by applying pseudo-force we can solve the numerical by taking into consideration the angle of the wedge.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Exam Pattern: Marking Scheme, Syllabus
Trending doubts
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main 2025 Helpline Numbers for Aspiring Candidates
Electromagnetic Waves Chapter - Physics JEE Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main Maths Class 11 Mock Test for 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
JEE Advanced 2024 Syllabus Weightage