
Find $\dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right]$.
Answer
219k+ views
Hint: In the given problem, we are required to differentiate a function involving trigonometric and inverse trigonometric functions. We first simplify the expression of the given function. Then, we use the rules of differentiation in order to differentiate the function. The power rule of differentiation must be known in order to solve the question.
Formula Used: $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Complete step by step answer:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)$.
Now, we know the half angle formula for cosine as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$ . Hence, substituting $\cos x$ as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + 2{{\cos }^2}\left( {\dfrac{x}{2}} \right) - 1}}{2}} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}{2}} } \right)} \right]$
Simplifying the expression, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} \right]$
Now, we know that ${\cos ^{ - 1}}\left( {\cos x} \right) = x$. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right)$
Using power rule of differentiation $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{1}{2}$
Note: The trigonometric formulae such as the half-angle formula for cosine should be remembered to solve such questions. We should go through the differentiation rules such as the power rule, product rule and quotient rule to do the differentiation of functions. The chain rule of differentiation is followed for differentiating composite functions.
Formula Used: $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Complete step by step answer:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)$.
Now, we know the half angle formula for cosine as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$ . Hence, substituting $\cos x$ as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + 2{{\cos }^2}\left( {\dfrac{x}{2}} \right) - 1}}{2}} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}{2}} } \right)} \right]$
Simplifying the expression, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} \right]$
Now, we know that ${\cos ^{ - 1}}\left( {\cos x} \right) = x$. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right)$
Using power rule of differentiation $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{1}{2}$
Note: The trigonometric formulae such as the half-angle formula for cosine should be remembered to solve such questions. We should go through the differentiation rules such as the power rule, product rule and quotient rule to do the differentiation of functions. The chain rule of differentiation is followed for differentiating composite functions.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

