
Find a vector perpendicular to ${{\hat i + 2 \hat j}}$ magnitude of ${{3}}\sqrt {{5}}$.
A) $3 \hat i + 6 \hat j$
B) $6 \hat i - 3 \hat j$
C) $4 \hat i - 2 \hat j$
D) $ \hat i - 2 \hat j$
Answer
220.2k+ views
Hint: In order to find a vector, first of all consider a general vector. Let us consider the given vector to be ${{\overrightarrow r = x \hat i + y \hat j}}$. We know that if two vectors are mutually perpendicular to each other then their dot product is zero. Now, find the dot product of both the vectors. Relate the obtained equation and the given equation to find the components of the vector. And the components of the vector are found by substitution method.
Complete step by step solution:
Let us consider that the required vector is ${{\overrightarrow r = x \hat i + y \hat j}}$
According to the question, ${{x \hat i + y \hat j}}$ is perpendicular to ${{\overrightarrow A = \hat i + 2 \hat j}}$.
When one vector is perpendicular to the other vector then the dot product of both the vectors is zero.
Thus, the dot product of vector ${{\overrightarrow r = x \hat i + y \hat j}}$ and vector ${{\overrightarrow A = \hat i + 2 \hat j}}$ must be zero.
Now, finding the dot product of both the vectors
$
\Rightarrow {{\overrightarrow r}}{{. \overrightarrow A = (x \hat i + y \hat j)}}{{.(\hat i + 2 \hat j)}} \\
\Rightarrow {{x + 2 y = 0}} \\
\Rightarrow {{x = - 2 y}}...{{(i)}} $
Given that the magnitude of vector r is ${{3}}\sqrt {{5}} $
So, ${{|r| = }}\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} {{ = 3}}\sqrt 5 $
Squaring both sides, we get
$
\Rightarrow {\left( {\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} } \right)^2}{{ = }}{\left( {{{3}}\sqrt 5 } \right)^2} \\
\Rightarrow {{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ }} = {{ }}45$
Substituting the value of x from (i), we get
$
\Rightarrow {{{( - 2 y)}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ = 45}} \\
\Rightarrow {{5 }}{{{y}}^2}{{ }} = {{ }}45 \\
\therefore {{y = 3}} $
Now substituting this value of y in equation (i), we get
$
\Rightarrow {{x = - 2 y = - 2 (3)}} \\
\Rightarrow {{x = - 6}}$
Hence, the required vector becomes
$\Rightarrow {{\overrightarrow r = 6 \hat i - 3 \hat j}}$
Therefore, option (B) is the correct choice.
Note: In a two-dimensional coordinate system, any vector can be broken into x - component and y - component. Let us consider the general vector, ${{\overrightarrow r = x \hat i + y \hat j + \hat z k}}$. But in the question, we have assumed the general vector to be ${{\overrightarrow r = x \hat i + y \hat j}}$. This is because of the fact that the other vector which is provided in the question stem i.e. ${{\hat i + 2 \hat j}}$ does not involve a vector of z - component. Each part of the two-dimensional vector is also known as a component. The components of a given vector depicts the influence of that vector in a given direction.
Complete step by step solution:
Let us consider that the required vector is ${{\overrightarrow r = x \hat i + y \hat j}}$
According to the question, ${{x \hat i + y \hat j}}$ is perpendicular to ${{\overrightarrow A = \hat i + 2 \hat j}}$.
When one vector is perpendicular to the other vector then the dot product of both the vectors is zero.
Thus, the dot product of vector ${{\overrightarrow r = x \hat i + y \hat j}}$ and vector ${{\overrightarrow A = \hat i + 2 \hat j}}$ must be zero.
Now, finding the dot product of both the vectors
$
\Rightarrow {{\overrightarrow r}}{{. \overrightarrow A = (x \hat i + y \hat j)}}{{.(\hat i + 2 \hat j)}} \\
\Rightarrow {{x + 2 y = 0}} \\
\Rightarrow {{x = - 2 y}}...{{(i)}} $
Given that the magnitude of vector r is ${{3}}\sqrt {{5}} $
So, ${{|r| = }}\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} {{ = 3}}\sqrt 5 $
Squaring both sides, we get
$
\Rightarrow {\left( {\sqrt {{{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}} } \right)^2}{{ = }}{\left( {{{3}}\sqrt 5 } \right)^2} \\
\Rightarrow {{{x}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ }} = {{ }}45$
Substituting the value of x from (i), we get
$
\Rightarrow {{{( - 2 y)}}^{{2}}}{{ + }}{{{y}}^{{2}}}{{ = 45}} \\
\Rightarrow {{5 }}{{{y}}^2}{{ }} = {{ }}45 \\
\therefore {{y = 3}} $
Now substituting this value of y in equation (i), we get
$
\Rightarrow {{x = - 2 y = - 2 (3)}} \\
\Rightarrow {{x = - 6}}$
Hence, the required vector becomes
$\Rightarrow {{\overrightarrow r = 6 \hat i - 3 \hat j}}$
Therefore, option (B) is the correct choice.
Note: In a two-dimensional coordinate system, any vector can be broken into x - component and y - component. Let us consider the general vector, ${{\overrightarrow r = x \hat i + y \hat j + \hat z k}}$. But in the question, we have assumed the general vector to be ${{\overrightarrow r = x \hat i + y \hat j}}$. This is because of the fact that the other vector which is provided in the question stem i.e. ${{\hat i + 2 \hat j}}$ does not involve a vector of z - component. Each part of the two-dimensional vector is also known as a component. The components of a given vector depicts the influence of that vector in a given direction.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Other Pages
NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Charging and Discharging of Capacitors

Understanding Geostationary and Geosynchronous Satellites

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

