
Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths according to the initial horizontal velocity component, highest first.

Answer
232.8k+ views
Hint: Kicked football forms a projected motion, therefore we define horizontal range;
Horizontal range of a projectile is the distance from the point of projection to the point where the projectile comes back to the plane of projection.
Formula for horizontal range is:
$R = \dfrac{{{v^2}\sin 2\theta }}{g}$ (v is the velocity, g is the gravitational acceleration, $\theta $ is the angle at which the object is projected) which is directly proportional to the velocity of the object being projected.
Complete step by step solution:
Let us define Horizontal range and horizontal component of velocity in detail.
It is the total horizontal distance from the point of projection to the point where the projectile comes back to the plane of projection. It is denoted by R;
In order to calculate horizontal range R, we shall consider horizontal motion of the projectile. The horizontal motion is uniform. It takes place with constant velocity of horizontal component $v\cos \theta $.
$R = v\cos \theta \times $ time of flight
where time of flight is given by;
$T = \dfrac{{2u\sin \theta }}{g}$
Therefore horizontal range is given by:
$R = v\cos \theta \times \dfrac{{2v\sin \theta }}{g}$.....................1
Component of horizontal velocity: Horizontal component of the velocity is the component of the velocity at which the velocity makes angle of projection it is given as;
$v\cos \theta $, which is directly proportional to horizontal range.
In the figure of the question, the fourth path of the kicked football has the maximum range, thus the fourth path of the football has the highest component of the horizontal velocity, then third, second and first.
Note: Examples of the objects of which shows the projectile motion are: a bomb released from a level flight, a bullet fired from a gun, an arrow released from bow, a javelin thrown by athlete. In all these motions we must neglect the resistance made by air and rotation of earth and the effect due to curvature of earth.
Horizontal range of a projectile is the distance from the point of projection to the point where the projectile comes back to the plane of projection.
Formula for horizontal range is:
$R = \dfrac{{{v^2}\sin 2\theta }}{g}$ (v is the velocity, g is the gravitational acceleration, $\theta $ is the angle at which the object is projected) which is directly proportional to the velocity of the object being projected.
Complete step by step solution:
Let us define Horizontal range and horizontal component of velocity in detail.
It is the total horizontal distance from the point of projection to the point where the projectile comes back to the plane of projection. It is denoted by R;
In order to calculate horizontal range R, we shall consider horizontal motion of the projectile. The horizontal motion is uniform. It takes place with constant velocity of horizontal component $v\cos \theta $.
$R = v\cos \theta \times $ time of flight
where time of flight is given by;
$T = \dfrac{{2u\sin \theta }}{g}$
Therefore horizontal range is given by:
$R = v\cos \theta \times \dfrac{{2v\sin \theta }}{g}$.....................1
Component of horizontal velocity: Horizontal component of the velocity is the component of the velocity at which the velocity makes angle of projection it is given as;
$v\cos \theta $, which is directly proportional to horizontal range.
In the figure of the question, the fourth path of the kicked football has the maximum range, thus the fourth path of the football has the highest component of the horizontal velocity, then third, second and first.
Note: Examples of the objects of which shows the projectile motion are: a bomb released from a level flight, a bullet fired from a gun, an arrow released from bow, a javelin thrown by athlete. In all these motions we must neglect the resistance made by air and rotation of earth and the effect due to curvature of earth.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

