Answer
Verified
78.3k+ views
Hint: For this we use the law of conservation of momentum which is momentum before and after collision is always conserved. And also use the equation of conservation of energy that energy is conserved before and after collision.
Complete step by step solution:
As we have a block of mass m move with initial velocity $\vec u$ and wedge with same mass m and initial velocity $\vec v$ .
Now according to the law of conservation of momentum: For a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Therefore, $mu = \left( {m + m} \right)v$
Because after collision both the objects are combined so add their mass and they move with the same mass that is $m$ .
$ \Rightarrow mu = 2mv$
After calculating for $v$
$\therefore v = \dfrac{u}{2}$
After that we have an energy equation According to this total energy means potential and kinetic energy is equal before and after collision.
$\dfrac{1}{2}m{u^2} = mgH + \dfrac{1}{2}m{v^2} + \dfrac{1}{2}m{v^2}$
Because in starting only kinetic energy of block is in act whose velocity is $u$ and after that potential energy as well as kinetic energy of block and wedge is in act with common velocity $v$ .
$\dfrac{1}{2}m{u^2} = mgh + \dfrac{1}{2}m{\left( {\dfrac{u}{2}} \right)^2} + \dfrac{1}{2}m{\left( {\dfrac{u}{2}} \right)^2}$ (Insert value of $v$)
$\dfrac{1}{2}m{u^2} = mgh + \dfrac{1}{4}m{u^2}$
Now, like terms should be on same side
$\dfrac{1}{2}m{u^2} - \dfrac{1}{4}m{u^2} = mgh$
After subtraction
$ \Rightarrow \dfrac{1}{4}m{u^2} = mgh$
By cancelling $m$ we have velocity which is equal to
${u^2} = 4gh$
$\therefore u = 2\sqrt {gh} $
So, Option (A) is correct.
Note: Always remember about kinetic energy and potential energy which one is come into action. Otherwise the answer will be wrong and also in momentum conservation law remember that $2\sqrt {gh} $ both objects combined and move with the same velocity.
Complete step by step solution:
As we have a block of mass m move with initial velocity $\vec u$ and wedge with same mass m and initial velocity $\vec v$ .
Now according to the law of conservation of momentum: For a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Therefore, $mu = \left( {m + m} \right)v$
Because after collision both the objects are combined so add their mass and they move with the same mass that is $m$ .
$ \Rightarrow mu = 2mv$
After calculating for $v$
$\therefore v = \dfrac{u}{2}$
After that we have an energy equation According to this total energy means potential and kinetic energy is equal before and after collision.
$\dfrac{1}{2}m{u^2} = mgH + \dfrac{1}{2}m{v^2} + \dfrac{1}{2}m{v^2}$
Because in starting only kinetic energy of block is in act whose velocity is $u$ and after that potential energy as well as kinetic energy of block and wedge is in act with common velocity $v$ .
$\dfrac{1}{2}m{u^2} = mgh + \dfrac{1}{2}m{\left( {\dfrac{u}{2}} \right)^2} + \dfrac{1}{2}m{\left( {\dfrac{u}{2}} \right)^2}$ (Insert value of $v$)
$\dfrac{1}{2}m{u^2} = mgh + \dfrac{1}{4}m{u^2}$
Now, like terms should be on same side
$\dfrac{1}{2}m{u^2} - \dfrac{1}{4}m{u^2} = mgh$
After subtraction
$ \Rightarrow \dfrac{1}{4}m{u^2} = mgh$
By cancelling $m$ we have velocity which is equal to
${u^2} = 4gh$
$\therefore u = 2\sqrt {gh} $
So, Option (A) is correct.
Note: Always remember about kinetic energy and potential energy which one is come into action. Otherwise the answer will be wrong and also in momentum conservation law remember that $2\sqrt {gh} $ both objects combined and move with the same velocity.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The voltage of an AC supply varies with time t as V class 12 physics JEE_Main
Chloroform reacts with oxygen in the presence of light class 12 chemistry JEE_Main