
Evaluate the integral\[\int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]? (For some arbitrary constant k)
$
(a)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^3}}}{7}} \right) + k \\
(b)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x - \tan x} \right)}^2}}}{7}} \right) + k \\
(c)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k \\
(d)\dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k \\
$
Answer
137.1k+ views
Hint: In this question use the concept of substitution, let \[\sec x + \tan x\] be equal to some variable, then differentiate both sides and solve further by substituting it back to the main integral and use basic trigonometric identities to get the answer.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Collision - Important Concepts and Tips for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Elastic Collisions in One Dimension - JEE Important Topic

JEE Advanced 2024 Syllabus Weightage

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Functional Equations - Detailed Explanation with Methods for JEE
