Answer
Verified
78.6k+ views
Hint: In this question use the concept of substitution, let \[\sec x + \tan x\] be equal to some variable, then differentiate both sides and solve further by substituting it back to the main integral and use basic trigonometric identities to get the answer.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Complete step-by-step answer:
Let \[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} \]
Substitute \[\sec x + \tan x = t\]………………… (1)
So differentiate it w.r.t. x we have,
$ \Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt$
Now simplify it we have,
$ \Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt$
So from equation (1) we have
$ \Rightarrow \sec xdx = \dfrac{{dt}}{t}$
Now from equation (1) the value of $\dfrac{1}{t}$ =$\dfrac{1}{{\sec x + \tan x}}$………………….. (2)
Now add equation (1) and (2) we have,
$t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}$
Now in extreme left most part multiply and divide by $\left( {\sec x - \tan x} \right)$ we have,
\[t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
Now in denominator it is in the form of $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
And we know that the value of \[{\sec ^2}x - {\tan ^2}x\] is 1.
\[ \Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x\]
$ \Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)$………………….. (3)
So from equation (1), (2) and (3) the integral becomes
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt\]
Now simplify the above integral we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} \]
Now as we know \[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \] where k is some arbitrary integration constant, so use this property we have,
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k\]
Now simplify it we have,
\[ \Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k\]
\[ \Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k\]
Now re-substitute the value of t we have,
\[ \Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k\]
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like\[\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} \]. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main