
Evaluate the following integrals $\int {{{\sec }^4}x\tan xdx} $
Answer
206.7k+ views
Hint: Before attempting this question, one should have prior knowledge about the concept of integration and also remember to use $1 + {\tan ^2}x = {\sec ^2}x$ and take $\tan x$ as t and use the formula $\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C$, using this information you can approach the solution.
Complete step-by-step solution:
According to the given information we have integrals as $\int {{{\sec }^4}x\tan xdx} $
We can rewrite the given integrals as $\int {{{\sec }^2}x{{\sec }^2}x\tan xdx} $
As we know that by the trigonometric identity $1 + {\tan ^2}x = {\sec ^2}x$
Therefore, $\int {\left( {1 + {{\tan }^2}x} \right){{\sec }^2}x\tan xdx} $ (equation 1)
Let $\tan x$= t
Differentiating both side with respect to x we get
\[\dfrac{d}{{dx}}\left( {\tan x} \right) = \dfrac{{dt}}{{dx}}\]
We know that \[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\]
So, \[{\sec ^2}x = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow \]\[dx = \dfrac{{dt}}{{{{\sec }^2}x}}\]
Substituting the values in equation 1 we get
$\int {\left( {1 + {t^2}} \right)t \times {{\sec }^2}x \times \dfrac{{dt}}{{{{\sec }^2}x}}} $
\[ \Rightarrow \]$\int {\left( {1 + {t^2}} \right)tdt} $
\[ \Rightarrow \]$\int {\left( {t + {t^3}} \right)dt} $
\[ \Rightarrow \]$\int {tdt} + \int {{t^3}dt} $
We know that by the integration identity $\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C$
Therefore, $\int {tdt} + \int {{t^3}dt} = \dfrac{{{t^{1 + 1}}}}{{1 + 1}} + \dfrac{{{t^{3 + 1}}}}{{3 + 1}}$
\[ \Rightarrow \]$\dfrac{{{t^2}}}{2} + \dfrac{{{t^4}}}{4} + C$
Now substituting the value of t in the above equation we get
$\dfrac{{{{\tan }^2}x}}{2} + \dfrac{{{{\tan }^4}x}}{4} + C$
Therefore, the integral of $\int {{{\sec }^4}x\tan xdx} = \dfrac{{{{\tan }^2}x}}{2} + \dfrac{{{{\tan }^4}x}}{4} + C$.
Note: In the above question we used the method of integration to find the integral of trigonometric functions where the term “function” can be explained as a relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Complete step-by-step solution:
According to the given information we have integrals as $\int {{{\sec }^4}x\tan xdx} $
We can rewrite the given integrals as $\int {{{\sec }^2}x{{\sec }^2}x\tan xdx} $
As we know that by the trigonometric identity $1 + {\tan ^2}x = {\sec ^2}x$
Therefore, $\int {\left( {1 + {{\tan }^2}x} \right){{\sec }^2}x\tan xdx} $ (equation 1)
Let $\tan x$= t
Differentiating both side with respect to x we get
\[\dfrac{d}{{dx}}\left( {\tan x} \right) = \dfrac{{dt}}{{dx}}\]
We know that \[\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x\]
So, \[{\sec ^2}x = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow \]\[dx = \dfrac{{dt}}{{{{\sec }^2}x}}\]
Substituting the values in equation 1 we get
$\int {\left( {1 + {t^2}} \right)t \times {{\sec }^2}x \times \dfrac{{dt}}{{{{\sec }^2}x}}} $
\[ \Rightarrow \]$\int {\left( {1 + {t^2}} \right)tdt} $
\[ \Rightarrow \]$\int {\left( {t + {t^3}} \right)dt} $
\[ \Rightarrow \]$\int {tdt} + \int {{t^3}dt} $
We know that by the integration identity $\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C$
Therefore, $\int {tdt} + \int {{t^3}dt} = \dfrac{{{t^{1 + 1}}}}{{1 + 1}} + \dfrac{{{t^{3 + 1}}}}{{3 + 1}}$
\[ \Rightarrow \]$\dfrac{{{t^2}}}{2} + \dfrac{{{t^4}}}{4} + C$
Now substituting the value of t in the above equation we get
$\dfrac{{{{\tan }^2}x}}{2} + \dfrac{{{{\tan }^4}x}}{4} + C$
Therefore, the integral of $\int {{{\sec }^4}x\tan xdx} = \dfrac{{{{\tan }^2}x}}{2} + \dfrac{{{{\tan }^4}x}}{4} + C$.
Note: In the above question we used the method of integration to find the integral of trigonometric functions where the term “function” can be explained as a relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

