
Evaluate \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \]
A. \[\dfrac{1}{{\sqrt {10} }}\]
B. \[ - \dfrac{1}{{\sqrt {10} }}\]
C. \[\dfrac{1}{{10}}\]
D. \[ - \dfrac{1}{{10}}\]
Answer
160.8k+ views
Hint: In the given question, we need to find the value of \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]. For that, we know the formula \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]. So, we apply this formula to our function and simplify it to get the desired result.
Formula used:
We have used the following formulas:
1. \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
2. \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Complete step-by-step solution:
Given that \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
We need to find the value of the given function.
Now we know that
\[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
Now,by substituting this formula in our function, we get
\[
\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {\dfrac{1}{2}2{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{2 \times 5}}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{10}}} } \right)} \right)
\]
On further simplification, we get
\[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {{{\sin }^{ - 1}}\left( { \pm \dfrac{1}{{\sqrt {10} }}} \right)} \right)\]
Now we know that
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Therefore, \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) and (B) is correct option.
Additional information: Inverse trigonometric functions perform the inverse operation of trigonometric functions like sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are particularly useful for right-angle triangles. The inverse trigonometric function is represented by the convention symbol, which includes arc-prefixes such as arc sin(x), arc cos(x), arc tan(x), arccsc(x), arcsec(x), and arc cot (x). The domain of the function is made up of all possible values of the independent variable where the function is defined, and the range is the set obtained by substituting all domain values into the function.
Note: Students should also use an alternate method to solve the above question, shown below:
Given that \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)\]
Now let us assume that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta \]
So, \[\cos \theta = \dfrac{4}{5}\]
Now we know that \[{\cos} \theta = 1 -2 {\sin ^2}\dfrac{\theta}{2} \]
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
So,
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
On further simplification, we get
\[
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{5 \times 2}} \\
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{10}} \\
\sin \dfrac{\theta }{2} = \sqrt {\dfrac{1}{{10}}} \\
\sin \dfrac{\theta }{2} = \pm \dfrac{1}{{\sqrt {10} }}
\]
Therefore, \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) is correct option.
Formula used:
We have used the following formulas:
1. \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
2. \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Complete step-by-step solution:
Given that \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
We need to find the value of the given function.
Now we know that
\[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
Now,by substituting this formula in our function, we get
\[
\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {\dfrac{1}{2}2{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{2 \times 5}}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{10}}} } \right)} \right)
\]
On further simplification, we get
\[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {{{\sin }^{ - 1}}\left( { \pm \dfrac{1}{{\sqrt {10} }}} \right)} \right)\]
Now we know that
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Therefore, \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) and (B) is correct option.
Additional information: Inverse trigonometric functions perform the inverse operation of trigonometric functions like sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are particularly useful for right-angle triangles. The inverse trigonometric function is represented by the convention symbol, which includes arc-prefixes such as arc sin(x), arc cos(x), arc tan(x), arccsc(x), arcsec(x), and arc cot (x). The domain of the function is made up of all possible values of the independent variable where the function is defined, and the range is the set obtained by substituting all domain values into the function.
Note: Students should also use an alternate method to solve the above question, shown below:
Given that \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)\]
Now let us assume that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta \]
So, \[\cos \theta = \dfrac{4}{5}\]
Now we know that \[{\cos} \theta = 1 -2 {\sin ^2}\dfrac{\theta}{2} \]
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
So,
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
On further simplification, we get
\[
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{5 \times 2}} \\
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{10}} \\
\sin \dfrac{\theta }{2} = \sqrt {\dfrac{1}{{10}}} \\
\sin \dfrac{\theta }{2} = \pm \dfrac{1}{{\sqrt {10} }}
\]
Therefore, \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) is correct option.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
