
Evaluate \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \]
A. \[\dfrac{1}{{\sqrt {10} }}\]
B. \[ - \dfrac{1}{{\sqrt {10} }}\]
C. \[\dfrac{1}{{10}}\]
D. \[ - \dfrac{1}{{10}}\]
Answer
218.4k+ views
Hint: In the given question, we need to find the value of \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]. For that, we know the formula \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]. So, we apply this formula to our function and simplify it to get the desired result.
Formula used:
We have used the following formulas:
1. \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
2. \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Complete step-by-step solution:
Given that \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
We need to find the value of the given function.
Now we know that
\[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
Now,by substituting this formula in our function, we get
\[
\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {\dfrac{1}{2}2{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{2 \times 5}}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{10}}} } \right)} \right)
\]
On further simplification, we get
\[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {{{\sin }^{ - 1}}\left( { \pm \dfrac{1}{{\sqrt {10} }}} \right)} \right)\]
Now we know that
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Therefore, \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) and (B) is correct option.
Additional information: Inverse trigonometric functions perform the inverse operation of trigonometric functions like sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are particularly useful for right-angle triangles. The inverse trigonometric function is represented by the convention symbol, which includes arc-prefixes such as arc sin(x), arc cos(x), arc tan(x), arccsc(x), arcsec(x), and arc cot (x). The domain of the function is made up of all possible values of the independent variable where the function is defined, and the range is the set obtained by substituting all domain values into the function.
Note: Students should also use an alternate method to solve the above question, shown below:
Given that \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)\]
Now let us assume that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta \]
So, \[\cos \theta = \dfrac{4}{5}\]
Now we know that \[{\cos} \theta = 1 -2 {\sin ^2}\dfrac{\theta}{2} \]
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
So,
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
On further simplification, we get
\[
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{5 \times 2}} \\
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{10}} \\
\sin \dfrac{\theta }{2} = \sqrt {\dfrac{1}{{10}}} \\
\sin \dfrac{\theta }{2} = \pm \dfrac{1}{{\sqrt {10} }}
\]
Therefore, \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) is correct option.
Formula used:
We have used the following formulas:
1. \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
2. \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Complete step-by-step solution:
Given that \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
We need to find the value of the given function.
Now we know that
\[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
Now,by substituting this formula in our function, we get
\[
\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {\dfrac{1}{2}2{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{2 \times 5}}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{10}}} } \right)} \right)
\]
On further simplification, we get
\[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {{{\sin }^{ - 1}}\left( { \pm \dfrac{1}{{\sqrt {10} }}} \right)} \right)\]
Now we know that
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Therefore, \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) and (B) is correct option.
Additional information: Inverse trigonometric functions perform the inverse operation of trigonometric functions like sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are particularly useful for right-angle triangles. The inverse trigonometric function is represented by the convention symbol, which includes arc-prefixes such as arc sin(x), arc cos(x), arc tan(x), arccsc(x), arcsec(x), and arc cot (x). The domain of the function is made up of all possible values of the independent variable where the function is defined, and the range is the set obtained by substituting all domain values into the function.
Note: Students should also use an alternate method to solve the above question, shown below:
Given that \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)\]
Now let us assume that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta \]
So, \[\cos \theta = \dfrac{4}{5}\]
Now we know that \[{\cos} \theta = 1 -2 {\sin ^2}\dfrac{\theta}{2} \]
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
So,
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
On further simplification, we get
\[
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{5 \times 2}} \\
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{10}} \\
\sin \dfrac{\theta }{2} = \sqrt {\dfrac{1}{{10}}} \\
\sin \dfrac{\theta }{2} = \pm \dfrac{1}{{\sqrt {10} }}
\]
Therefore, \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) is correct option.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

