
Evaluate \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \]
A. \[\dfrac{1}{{\sqrt {10} }}\]
B. \[ - \dfrac{1}{{\sqrt {10} }}\]
C. \[\dfrac{1}{{10}}\]
D. \[ - \dfrac{1}{{10}}\]
Answer
232.8k+ views
Hint: In the given question, we need to find the value of \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]. For that, we know the formula \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]. So, we apply this formula to our function and simplify it to get the desired result.
Formula used:
We have used the following formulas:
1. \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
2. \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Complete step-by-step solution:
Given that \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
We need to find the value of the given function.
Now we know that
\[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
Now,by substituting this formula in our function, we get
\[
\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {\dfrac{1}{2}2{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{2 \times 5}}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{10}}} } \right)} \right)
\]
On further simplification, we get
\[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {{{\sin }^{ - 1}}\left( { \pm \dfrac{1}{{\sqrt {10} }}} \right)} \right)\]
Now we know that
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Therefore, \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) and (B) is correct option.
Additional information: Inverse trigonometric functions perform the inverse operation of trigonometric functions like sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are particularly useful for right-angle triangles. The inverse trigonometric function is represented by the convention symbol, which includes arc-prefixes such as arc sin(x), arc cos(x), arc tan(x), arccsc(x), arcsec(x), and arc cot (x). The domain of the function is made up of all possible values of the independent variable where the function is defined, and the range is the set obtained by substituting all domain values into the function.
Note: Students should also use an alternate method to solve the above question, shown below:
Given that \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)\]
Now let us assume that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta \]
So, \[\cos \theta = \dfrac{4}{5}\]
Now we know that \[{\cos} \theta = 1 -2 {\sin ^2}\dfrac{\theta}{2} \]
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
So,
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
On further simplification, we get
\[
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{5 \times 2}} \\
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{10}} \\
\sin \dfrac{\theta }{2} = \sqrt {\dfrac{1}{{10}}} \\
\sin \dfrac{\theta }{2} = \pm \dfrac{1}{{\sqrt {10} }}
\]
Therefore, \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) is correct option.
Formula used:
We have used the following formulas:
1. \[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
2. \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Complete step-by-step solution:
Given that \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
We need to find the value of the given function.
Now we know that
\[{\cos ^{ - 1}}x = 2{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - x}}{2}} } \right)\]
Now,by substituting this formula in our function, we get
\[
\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {\dfrac{1}{2}2{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{2}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{2 \times 5}}} } \right)} \right) \\
= \sin \left( {{{\sin }^{ - 1}}\left( { \pm \sqrt {\dfrac{1}{{10}}} } \right)} \right)
\]
On further simplification, we get
\[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \sin \left( {{{\sin }^{ - 1}}\left( { \pm \dfrac{1}{{\sqrt {10} }}} \right)} \right)\]
Now we know that
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\] as \[x \in \left[ { - 1,1} \right]\]
Therefore, \[\sin \left[ {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right] = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) and (B) is correct option.
Additional information: Inverse trigonometric functions perform the inverse operation of trigonometric functions like sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are particularly useful for right-angle triangles. The inverse trigonometric function is represented by the convention symbol, which includes arc-prefixes such as arc sin(x), arc cos(x), arc tan(x), arccsc(x), arcsec(x), and arc cot (x). The domain of the function is made up of all possible values of the independent variable where the function is defined, and the range is the set obtained by substituting all domain values into the function.
Note: Students should also use an alternate method to solve the above question, shown below:
Given that \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right)\]
Now let us assume that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \theta \]
So, \[\cos \theta = \dfrac{4}{5}\]
Now we know that \[{\cos} \theta = 1 -2 {\sin ^2}\dfrac{\theta}{2} \]
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
So,
\[
1 - 2{\sin ^2}\dfrac{\theta }{2} = \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = 1 - \dfrac{4}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{{5 - 4}}{5} \\
2{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{5}
\]
On further simplification, we get
\[
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{5 \times 2}} \\
{\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{{10}} \\
\sin \dfrac{\theta }{2} = \sqrt {\dfrac{1}{{10}}} \\
\sin \dfrac{\theta }{2} = \pm \dfrac{1}{{\sqrt {10} }}
\]
Therefore, \[\sin \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = \pm \dfrac{1}{{\sqrt {10} }}\]
Hence, option (A) is correct option.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

