
Evaluate ${\Delta ^2}\left( {3{e^x}} \right)$.
A. $3{e^x}$
B. $3\left( {h - 1} \right){e^x}$
C. $3{\left( {{e^h} - 1} \right)^2}{e^x}$
D. None of these
Answer
232.8k+ views
Hint: $\Delta$ is known as a forwarded difference operator. We will apply the general formula of the forwarded difference operator to get the first order forward difference operator. Then again we will apply the general formula of the forward difference operator in the first order to get the second order forward difference operator $3{e^x}$.
Formula Used:
$\Delta f\left(x\right)= f\left(x+h\right)- f\left(x\right)$
$\Delta \left( {a{e^x}} \right) = a\Delta \left( {{e^x}} \right)$
$\Delta \left( {{e^x}} \right) = {e^{x + h}} - {e^h}$
Complete step by step solution:
Given expression is ${\Delta ^2}\left( {3{e^x}} \right)$.
A forwarded difference operator, denoted $\Delta$, defined by the equation $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$.
First, we will calculate the first order forward difference operator of $3{e^x}$.
Here, $f\left( x \right) = 3{e^x}$
Substitute $x = x + h$ in $f\left( x \right) = 3{e^x}$
$f\left( {x + h} \right) = 3{e^{x + h}}$
Now take forwarded difference operator on both sides of $f\left( x \right) = 3{e^x}$
$\Delta f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Apply the formula $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$
$ \Rightarrow f\left( {x + h} \right) - f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Substitute $f\left( x \right) = 3{e^x}$ and $f\left( {x + h} \right) = 3{e^{x + h}}$ in the above equation:
$ \Rightarrow 3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$ …….(i)
Again take the forward difference operator on both sides
$ \Rightarrow \Delta \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Now the formula of the sum of the forwarded difference operator:
$ \Rightarrow \Delta \left( {3{e^{x + h}}} \right) - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$ ……(ii)
Assume that, $g\left( x \right) = 3{e^{x + h}}$
Take the forward difference operator on both sides
$\Delta g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$
Now apply the general formula of the forwarded difference operator:
$ \Rightarrow g\left( {x + h} \right) - g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$ …..(iii)
Substitute $x = x + h$ into the equation $g\left( x \right) = 3{e^{x + h}}$
$g\left( {x + h} \right) = 3{e^{x + h + h}}$
Simplify the above equation:
$ \Rightarrow g\left( {x + h} \right) = 3{e^{x + 2h}}$
Put the value of $g\left( x \right)$ and $g\left( {x + h} \right)$ in equation (iii)
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} = \Delta \left( {3{e^{x + h}}} \right)$
Substitute the value of $\Delta \left( {3{e^{x + h}}} \right)$ in equation (ii)
$3{e^{x + 2h}} - 3{e^{x + h}} - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
From equation (i) we get $3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$, plug the value of $\Delta \left( {3{e^x}} \right)$ in above equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Simplify the equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - 3{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Add the like terms:
$ \Rightarrow 3{e^{x + 2h}} - 6{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Option ‘C’ is correct
Note: In the basic formula of forwarded difference, we get a constant $h$. Remember $h$ is a constant indicating the difference between successive points of interpolation or calculation.
Formula Used:
$\Delta f\left(x\right)= f\left(x+h\right)- f\left(x\right)$
$\Delta \left( {a{e^x}} \right) = a\Delta \left( {{e^x}} \right)$
$\Delta \left( {{e^x}} \right) = {e^{x + h}} - {e^h}$
Complete step by step solution:
Given expression is ${\Delta ^2}\left( {3{e^x}} \right)$.
A forwarded difference operator, denoted $\Delta$, defined by the equation $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$.
First, we will calculate the first order forward difference operator of $3{e^x}$.
Here, $f\left( x \right) = 3{e^x}$
Substitute $x = x + h$ in $f\left( x \right) = 3{e^x}$
$f\left( {x + h} \right) = 3{e^{x + h}}$
Now take forwarded difference operator on both sides of $f\left( x \right) = 3{e^x}$
$\Delta f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Apply the formula $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$
$ \Rightarrow f\left( {x + h} \right) - f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Substitute $f\left( x \right) = 3{e^x}$ and $f\left( {x + h} \right) = 3{e^{x + h}}$ in the above equation:
$ \Rightarrow 3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$ …….(i)
Again take the forward difference operator on both sides
$ \Rightarrow \Delta \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Now the formula of the sum of the forwarded difference operator:
$ \Rightarrow \Delta \left( {3{e^{x + h}}} \right) - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$ ……(ii)
Assume that, $g\left( x \right) = 3{e^{x + h}}$
Take the forward difference operator on both sides
$\Delta g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$
Now apply the general formula of the forwarded difference operator:
$ \Rightarrow g\left( {x + h} \right) - g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$ …..(iii)
Substitute $x = x + h$ into the equation $g\left( x \right) = 3{e^{x + h}}$
$g\left( {x + h} \right) = 3{e^{x + h + h}}$
Simplify the above equation:
$ \Rightarrow g\left( {x + h} \right) = 3{e^{x + 2h}}$
Put the value of $g\left( x \right)$ and $g\left( {x + h} \right)$ in equation (iii)
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} = \Delta \left( {3{e^{x + h}}} \right)$
Substitute the value of $\Delta \left( {3{e^{x + h}}} \right)$ in equation (ii)
$3{e^{x + 2h}} - 3{e^{x + h}} - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
From equation (i) we get $3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$, plug the value of $\Delta \left( {3{e^x}} \right)$ in above equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Simplify the equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - 3{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Add the like terms:
$ \Rightarrow 3{e^{x + 2h}} - 6{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Option ‘C’ is correct
Note: In the basic formula of forwarded difference, we get a constant $h$. Remember $h$ is a constant indicating the difference between successive points of interpolation or calculation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

