
Evaluate ${\Delta ^2}\left( {3{e^x}} \right)$.
A. $3{e^x}$
B. $3\left( {h - 1} \right){e^x}$
C. $3{\left( {{e^h} - 1} \right)^2}{e^x}$
D. None of these
Answer
218.7k+ views
Hint: $\Delta$ is known as a forwarded difference operator. We will apply the general formula of the forwarded difference operator to get the first order forward difference operator. Then again we will apply the general formula of the forward difference operator in the first order to get the second order forward difference operator $3{e^x}$.
Formula Used:
$\Delta f\left(x\right)= f\left(x+h\right)- f\left(x\right)$
$\Delta \left( {a{e^x}} \right) = a\Delta \left( {{e^x}} \right)$
$\Delta \left( {{e^x}} \right) = {e^{x + h}} - {e^h}$
Complete step by step solution:
Given expression is ${\Delta ^2}\left( {3{e^x}} \right)$.
A forwarded difference operator, denoted $\Delta$, defined by the equation $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$.
First, we will calculate the first order forward difference operator of $3{e^x}$.
Here, $f\left( x \right) = 3{e^x}$
Substitute $x = x + h$ in $f\left( x \right) = 3{e^x}$
$f\left( {x + h} \right) = 3{e^{x + h}}$
Now take forwarded difference operator on both sides of $f\left( x \right) = 3{e^x}$
$\Delta f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Apply the formula $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$
$ \Rightarrow f\left( {x + h} \right) - f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Substitute $f\left( x \right) = 3{e^x}$ and $f\left( {x + h} \right) = 3{e^{x + h}}$ in the above equation:
$ \Rightarrow 3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$ …….(i)
Again take the forward difference operator on both sides
$ \Rightarrow \Delta \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Now the formula of the sum of the forwarded difference operator:
$ \Rightarrow \Delta \left( {3{e^{x + h}}} \right) - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$ ……(ii)
Assume that, $g\left( x \right) = 3{e^{x + h}}$
Take the forward difference operator on both sides
$\Delta g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$
Now apply the general formula of the forwarded difference operator:
$ \Rightarrow g\left( {x + h} \right) - g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$ …..(iii)
Substitute $x = x + h$ into the equation $g\left( x \right) = 3{e^{x + h}}$
$g\left( {x + h} \right) = 3{e^{x + h + h}}$
Simplify the above equation:
$ \Rightarrow g\left( {x + h} \right) = 3{e^{x + 2h}}$
Put the value of $g\left( x \right)$ and $g\left( {x + h} \right)$ in equation (iii)
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} = \Delta \left( {3{e^{x + h}}} \right)$
Substitute the value of $\Delta \left( {3{e^{x + h}}} \right)$ in equation (ii)
$3{e^{x + 2h}} - 3{e^{x + h}} - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
From equation (i) we get $3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$, plug the value of $\Delta \left( {3{e^x}} \right)$ in above equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Simplify the equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - 3{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Add the like terms:
$ \Rightarrow 3{e^{x + 2h}} - 6{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Option ‘C’ is correct
Note: In the basic formula of forwarded difference, we get a constant $h$. Remember $h$ is a constant indicating the difference between successive points of interpolation or calculation.
Formula Used:
$\Delta f\left(x\right)= f\left(x+h\right)- f\left(x\right)$
$\Delta \left( {a{e^x}} \right) = a\Delta \left( {{e^x}} \right)$
$\Delta \left( {{e^x}} \right) = {e^{x + h}} - {e^h}$
Complete step by step solution:
Given expression is ${\Delta ^2}\left( {3{e^x}} \right)$.
A forwarded difference operator, denoted $\Delta$, defined by the equation $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$.
First, we will calculate the first order forward difference operator of $3{e^x}$.
Here, $f\left( x \right) = 3{e^x}$
Substitute $x = x + h$ in $f\left( x \right) = 3{e^x}$
$f\left( {x + h} \right) = 3{e^{x + h}}$
Now take forwarded difference operator on both sides of $f\left( x \right) = 3{e^x}$
$\Delta f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Apply the formula $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$
$ \Rightarrow f\left( {x + h} \right) - f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Substitute $f\left( x \right) = 3{e^x}$ and $f\left( {x + h} \right) = 3{e^{x + h}}$ in the above equation:
$ \Rightarrow 3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$ …….(i)
Again take the forward difference operator on both sides
$ \Rightarrow \Delta \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Now the formula of the sum of the forwarded difference operator:
$ \Rightarrow \Delta \left( {3{e^{x + h}}} \right) - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$ ……(ii)
Assume that, $g\left( x \right) = 3{e^{x + h}}$
Take the forward difference operator on both sides
$\Delta g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$
Now apply the general formula of the forwarded difference operator:
$ \Rightarrow g\left( {x + h} \right) - g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$ …..(iii)
Substitute $x = x + h$ into the equation $g\left( x \right) = 3{e^{x + h}}$
$g\left( {x + h} \right) = 3{e^{x + h + h}}$
Simplify the above equation:
$ \Rightarrow g\left( {x + h} \right) = 3{e^{x + 2h}}$
Put the value of $g\left( x \right)$ and $g\left( {x + h} \right)$ in equation (iii)
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} = \Delta \left( {3{e^{x + h}}} \right)$
Substitute the value of $\Delta \left( {3{e^{x + h}}} \right)$ in equation (ii)
$3{e^{x + 2h}} - 3{e^{x + h}} - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
From equation (i) we get $3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$, plug the value of $\Delta \left( {3{e^x}} \right)$ in above equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Simplify the equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - 3{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Add the like terms:
$ \Rightarrow 3{e^{x + 2h}} - 6{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Option ‘C’ is correct
Note: In the basic formula of forwarded difference, we get a constant $h$. Remember $h$ is a constant indicating the difference between successive points of interpolation or calculation.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

