
Evaluate ${\Delta ^2}\left( {3{e^x}} \right)$.
A. $3{e^x}$
B. $3\left( {h - 1} \right){e^x}$
C. $3{\left( {{e^h} - 1} \right)^2}{e^x}$
D. None of these
Answer
164.4k+ views
Hint: $\Delta$ is known as a forwarded difference operator. We will apply the general formula of the forwarded difference operator to get the first order forward difference operator. Then again we will apply the general formula of the forward difference operator in the first order to get the second order forward difference operator $3{e^x}$.
Formula Used:
$\Delta f\left(x\right)= f\left(x+h\right)- f\left(x\right)$
$\Delta \left( {a{e^x}} \right) = a\Delta \left( {{e^x}} \right)$
$\Delta \left( {{e^x}} \right) = {e^{x + h}} - {e^h}$
Complete step by step solution:
Given expression is ${\Delta ^2}\left( {3{e^x}} \right)$.
A forwarded difference operator, denoted $\Delta$, defined by the equation $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$.
First, we will calculate the first order forward difference operator of $3{e^x}$.
Here, $f\left( x \right) = 3{e^x}$
Substitute $x = x + h$ in $f\left( x \right) = 3{e^x}$
$f\left( {x + h} \right) = 3{e^{x + h}}$
Now take forwarded difference operator on both sides of $f\left( x \right) = 3{e^x}$
$\Delta f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Apply the formula $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$
$ \Rightarrow f\left( {x + h} \right) - f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Substitute $f\left( x \right) = 3{e^x}$ and $f\left( {x + h} \right) = 3{e^{x + h}}$ in the above equation:
$ \Rightarrow 3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$ …….(i)
Again take the forward difference operator on both sides
$ \Rightarrow \Delta \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Now the formula of the sum of the forwarded difference operator:
$ \Rightarrow \Delta \left( {3{e^{x + h}}} \right) - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$ ……(ii)
Assume that, $g\left( x \right) = 3{e^{x + h}}$
Take the forward difference operator on both sides
$\Delta g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$
Now apply the general formula of the forwarded difference operator:
$ \Rightarrow g\left( {x + h} \right) - g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$ …..(iii)
Substitute $x = x + h$ into the equation $g\left( x \right) = 3{e^{x + h}}$
$g\left( {x + h} \right) = 3{e^{x + h + h}}$
Simplify the above equation:
$ \Rightarrow g\left( {x + h} \right) = 3{e^{x + 2h}}$
Put the value of $g\left( x \right)$ and $g\left( {x + h} \right)$ in equation (iii)
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} = \Delta \left( {3{e^{x + h}}} \right)$
Substitute the value of $\Delta \left( {3{e^{x + h}}} \right)$ in equation (ii)
$3{e^{x + 2h}} - 3{e^{x + h}} - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
From equation (i) we get $3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$, plug the value of $\Delta \left( {3{e^x}} \right)$ in above equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Simplify the equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - 3{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Add the like terms:
$ \Rightarrow 3{e^{x + 2h}} - 6{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Option ‘C’ is correct
Note: In the basic formula of forwarded difference, we get a constant $h$. Remember $h$ is a constant indicating the difference between successive points of interpolation or calculation.
Formula Used:
$\Delta f\left(x\right)= f\left(x+h\right)- f\left(x\right)$
$\Delta \left( {a{e^x}} \right) = a\Delta \left( {{e^x}} \right)$
$\Delta \left( {{e^x}} \right) = {e^{x + h}} - {e^h}$
Complete step by step solution:
Given expression is ${\Delta ^2}\left( {3{e^x}} \right)$.
A forwarded difference operator, denoted $\Delta$, defined by the equation $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$.
First, we will calculate the first order forward difference operator of $3{e^x}$.
Here, $f\left( x \right) = 3{e^x}$
Substitute $x = x + h$ in $f\left( x \right) = 3{e^x}$
$f\left( {x + h} \right) = 3{e^{x + h}}$
Now take forwarded difference operator on both sides of $f\left( x \right) = 3{e^x}$
$\Delta f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Apply the formula $\Delta f\left( x \right) = f\left( {x + h} \right) - f\left( x \right)$
$ \Rightarrow f\left( {x + h} \right) - f\left( x \right) = \Delta \left( {3{e^x}} \right)$
Substitute $f\left( x \right) = 3{e^x}$ and $f\left( {x + h} \right) = 3{e^{x + h}}$ in the above equation:
$ \Rightarrow 3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$ …….(i)
Again take the forward difference operator on both sides
$ \Rightarrow \Delta \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Now the formula of the sum of the forwarded difference operator:
$ \Rightarrow \Delta \left( {3{e^{x + h}}} \right) - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$ ……(ii)
Assume that, $g\left( x \right) = 3{e^{x + h}}$
Take the forward difference operator on both sides
$\Delta g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$
Now apply the general formula of the forwarded difference operator:
$ \Rightarrow g\left( {x + h} \right) - g\left( x \right) = \Delta \left( {3{e^{x + h}}} \right)$ …..(iii)
Substitute $x = x + h$ into the equation $g\left( x \right) = 3{e^{x + h}}$
$g\left( {x + h} \right) = 3{e^{x + h + h}}$
Simplify the above equation:
$ \Rightarrow g\left( {x + h} \right) = 3{e^{x + 2h}}$
Put the value of $g\left( x \right)$ and $g\left( {x + h} \right)$ in equation (iii)
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} = \Delta \left( {3{e^{x + h}}} \right)$
Substitute the value of $\Delta \left( {3{e^{x + h}}} \right)$ in equation (ii)
$3{e^{x + 2h}} - 3{e^{x + h}} - \Delta \left( {3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
From equation (i) we get $3{e^{x + h}} - 3{e^x} = \Delta \left( {3{e^x}} \right)$, plug the value of $\Delta \left( {3{e^x}} \right)$ in above equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - \left( {3{e^{x + h}} - 3{e^x}} \right) = {\Delta ^2}\left( {3{e^x}} \right)$
Simplify the equation:
$ \Rightarrow 3{e^{x + 2h}} - 3{e^{x + h}} - 3{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Add the like terms:
$ \Rightarrow 3{e^{x + 2h}} - 6{e^{x + h}} + 3{e^x} = {\Delta ^2}\left( {3{e^x}} \right)$
Option ‘C’ is correct
Note: In the basic formula of forwarded difference, we get a constant $h$. Remember $h$ is a constant indicating the difference between successive points of interpolation or calculation.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
