Answer
Verified
81.3k+ views
Hint: As we know in a chemical reaction, equivalence of a substance is explained as the amount of which combines with 1 mole of hydrogen atoms or replaces the same number of hydrogen atoms. Thus equivalent weight in grams is weight in grams of 1 equivalent.
Complete step by step answer:
In this question given that ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${\text{P}}{{\text{H}}_{\text{3}}}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {\text{P}}{{\text{H}}_{\text{3}}} \\
{{\text{P}}^ + } + 4{e^ - } \to {{\text{P}}^{3 - }} \\
$
Thus equivalent weight of $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)$ in ${\text{P}}{{\text{H}}_{\text{3}}}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{{\text{4}}} \\
$
(Here valance factor is 4)
Again, ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3} \\
{{\text{P}}^ + } - 2{e^ - } \to {{\text{P}}^{3 + }} \\
$
Thus equivalent weight of \[\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)\] in ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{2} \\
$
(Here valance factor is 2)
Now we add equivalence weight of ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ .
$\dfrac{{\text{M}}}{{\text{4}}}{\text{ + }}\dfrac{{\text{M}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{3M}}}}{{\text{4}}}$
Thus option D is correct.
Additional Information: We know that the law of equivalence is one equivalence of an element combined with one equivalent of others. Equivalent weight of an acid in an acid base neutralization reaction is the portion of weight of 1 mole of the acid that can furnish 1 mole of hydrogen ion and equivalent weight of a base is part of weight of one mole of base that can furnish 1 mole of hydroxide ion or accept 1 mole of hydrogen ion.
Note:
As we know a redox reaction that reactant is transformed into product by simultaneous reduction reaction as well as oxidation reaction is termed as disproportionation reaction. For a reaction, say hydrogen peroxide transformed into water and oxygen. In this reaction hydrogen peroxide oxidizes and forms oxygen and it reduces and forms water.
Complete step by step answer:
In this question given that ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${\text{P}}{{\text{H}}_{\text{3}}}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {\text{P}}{{\text{H}}_{\text{3}}} \\
{{\text{P}}^ + } + 4{e^ - } \to {{\text{P}}^{3 - }} \\
$
Thus equivalent weight of $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)$ in ${\text{P}}{{\text{H}}_{\text{3}}}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{{\text{4}}} \\
$
(Here valance factor is 4)
Again, ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3} \\
{{\text{P}}^ + } - 2{e^ - } \to {{\text{P}}^{3 + }} \\
$
Thus equivalent weight of \[\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)\] in ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{2} \\
$
(Here valance factor is 2)
Now we add equivalence weight of ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ .
$\dfrac{{\text{M}}}{{\text{4}}}{\text{ + }}\dfrac{{\text{M}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{3M}}}}{{\text{4}}}$
Thus option D is correct.
Additional Information: We know that the law of equivalence is one equivalence of an element combined with one equivalent of others. Equivalent weight of an acid in an acid base neutralization reaction is the portion of weight of 1 mole of the acid that can furnish 1 mole of hydrogen ion and equivalent weight of a base is part of weight of one mole of base that can furnish 1 mole of hydroxide ion or accept 1 mole of hydrogen ion.
Note:
As we know a redox reaction that reactant is transformed into product by simultaneous reduction reaction as well as oxidation reaction is termed as disproportionation reaction. For a reaction, say hydrogen peroxide transformed into water and oxygen. In this reaction hydrogen peroxide oxidizes and forms oxygen and it reduces and forms water.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A rope of 1 cm in diameter breaks if tension in it class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main
Assertion The melting point Mn is more than that of class 11 chemistry JEE_Main