
Equivalent weight of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ when it disproportionate into ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$ (mol. wt. = M) is:
A. M
B. $\dfrac{{\text{M}}}{{\text{2}}}$
C. $\dfrac{{\text{M}}}{4}$
D. $\dfrac{{{\text{3M}}}}{4}$
Answer
232.8k+ views
Hint: As we know in a chemical reaction, equivalence of a substance is explained as the amount of which combines with 1 mole of hydrogen atoms or replaces the same number of hydrogen atoms. Thus equivalent weight in grams is weight in grams of 1 equivalent.
Complete step by step answer:
In this question given that ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${\text{P}}{{\text{H}}_{\text{3}}}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {\text{P}}{{\text{H}}_{\text{3}}} \\
{{\text{P}}^ + } + 4{e^ - } \to {{\text{P}}^{3 - }} \\
$
Thus equivalent weight of $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)$ in ${\text{P}}{{\text{H}}_{\text{3}}}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{{\text{4}}} \\
$
(Here valance factor is 4)
Again, ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3} \\
{{\text{P}}^ + } - 2{e^ - } \to {{\text{P}}^{3 + }} \\
$
Thus equivalent weight of \[\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)\] in ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{2} \\
$
(Here valance factor is 2)
Now we add equivalence weight of ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ .
$\dfrac{{\text{M}}}{{\text{4}}}{\text{ + }}\dfrac{{\text{M}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{3M}}}}{{\text{4}}}$
Thus option D is correct.
Additional Information: We know that the law of equivalence is one equivalence of an element combined with one equivalent of others. Equivalent weight of an acid in an acid base neutralization reaction is the portion of weight of 1 mole of the acid that can furnish 1 mole of hydrogen ion and equivalent weight of a base is part of weight of one mole of base that can furnish 1 mole of hydroxide ion or accept 1 mole of hydrogen ion.
Note:
As we know a redox reaction that reactant is transformed into product by simultaneous reduction reaction as well as oxidation reaction is termed as disproportionation reaction. For a reaction, say hydrogen peroxide transformed into water and oxygen. In this reaction hydrogen peroxide oxidizes and forms oxygen and it reduces and forms water.
Complete step by step answer:
In this question given that ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${\text{P}}{{\text{H}}_{\text{3}}}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {\text{P}}{{\text{H}}_{\text{3}}} \\
{{\text{P}}^ + } + 4{e^ - } \to {{\text{P}}^{3 - }} \\
$
Thus equivalent weight of $\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)$ in ${\text{P}}{{\text{H}}_{\text{3}}}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{{\text{4}}} \\
$
(Here valance factor is 4)
Again, ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}$ disproportionate and form ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ . We can write this equation is as follows:
$
{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}} \to {{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3} \\
{{\text{P}}^ + } - 2{e^ - } \to {{\text{P}}^{3 + }} \\
$
Thus equivalent weight of \[\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{2}}}} \right)\] in ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ is,
$
{\text{ = }}\dfrac{{{\text{Molecular}}\,{\text{weight}}}}{{{\text{Valance}}\,{\text{factor}}}} \\
{\text{ = }}\dfrac{{\text{M}}}{2} \\
$
(Here valance factor is 2)
Now we add equivalence weight of ${\text{P}}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_3}$ .
$\dfrac{{\text{M}}}{{\text{4}}}{\text{ + }}\dfrac{{\text{M}}}{{\text{2}}}{\text{ = }}\dfrac{{{\text{3M}}}}{{\text{4}}}$
Thus option D is correct.
Additional Information: We know that the law of equivalence is one equivalence of an element combined with one equivalent of others. Equivalent weight of an acid in an acid base neutralization reaction is the portion of weight of 1 mole of the acid that can furnish 1 mole of hydrogen ion and equivalent weight of a base is part of weight of one mole of base that can furnish 1 mole of hydroxide ion or accept 1 mole of hydrogen ion.
Note:
As we know a redox reaction that reactant is transformed into product by simultaneous reduction reaction as well as oxidation reaction is termed as disproportionation reaction. For a reaction, say hydrogen peroxide transformed into water and oxygen. In this reaction hydrogen peroxide oxidizes and forms oxygen and it reduces and forms water.
Recently Updated Pages
Know The Difference Between Fluid And Liquid

Types of Solutions in Chemistry: Explained Simply

Difference Between Crystalline and Amorphous Solid: Table & Examples

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

