
Equipotential at a great distance from a collection of charges whose total sum is not zero are approximately:
(A) Spheres
(B) Planes
(C) Paraboloids
(D) Ellipsoids
Answer
214.2k+ views
Hint if we draw a surface in such a way that the electric potential is the same at all the points of the surface, it is called equipotential surface. The component of the electric field parallel to as the potential does not change in this direction. Thus, the electric field is perpendicular to the equipotential surface. For a point charge, the electric field is radial and the electric field is radial and the equipotential surface are concentric spheres with centers at the charge.
Complete Step by step solution
In this problem, the collection of charges, whose total sum is not zero, with regard to great distance can be considered as a point charge.
Now we know that the electric potential due to point charges $q$ is given by
$V = {k_e}\dfrac{q}{r}$
Since, ${k_e}$ and $q$ are constant
Therefore, we can write
$V\alpha \dfrac{1}{r}$
This suggests that electric potentials due to point charge are the same for all equidistant points. the locus of these equidistant points, which are at same potential, form a sphere surface.
Hence, the equipotential at a great distance from a collection of charges whose total sum is not zero are spheres.
Option (A) is correct.
Note The work done in moving a charge between two points in an equipotential surface is zero. If a point charge is moved from point \[{V_A}\] to ${V_B}$ in an equipotential surface, then the work done in moving the charge is given by
\[W = q({V_A} - {V_B})\]
As \[({V_A} - {V_B})\] is equal to zero, the total work done is $W = 0$ .
Complete Step by step solution
In this problem, the collection of charges, whose total sum is not zero, with regard to great distance can be considered as a point charge.
Now we know that the electric potential due to point charges $q$ is given by
$V = {k_e}\dfrac{q}{r}$
Since, ${k_e}$ and $q$ are constant
Therefore, we can write
$V\alpha \dfrac{1}{r}$
This suggests that electric potentials due to point charge are the same for all equidistant points. the locus of these equidistant points, which are at same potential, form a sphere surface.
Hence, the equipotential at a great distance from a collection of charges whose total sum is not zero are spheres.
Option (A) is correct.
Note The work done in moving a charge between two points in an equipotential surface is zero. If a point charge is moved from point \[{V_A}\] to ${V_B}$ in an equipotential surface, then the work done in moving the charge is given by
\[W = q({V_A} - {V_B})\]
As \[({V_A} - {V_B})\] is equal to zero, the total work done is $W = 0$ .
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Average and RMS Value in Physics: Formula, Comparison & Application

