Answer
Verified
89.1k+ views
Hint: We know that there are different energy states for atoms. Atoms are most likely to remain in their ground state. But if we provide enough energy for the atoms will jump from its ground state to the excited states. Here we have to find the energy required to excite the hydrogen atom from its ground state to its second excited state. Atoms are in an excited state when the electrons absorb energy and jump to higher energy levels.
Formula used
${E_n} = \dfrac{{ - 13.6}}{{{n^2}}}eV$
Where ${E_n}$ is the energy of the hydrogen atom in the ${n^{th}}$ energy level and $n$ stands for the required energy level to which we excite the atom. We get the constant value of $13.6$ through calculation.
Complete step by step solution:
We know that the energy of the hydrogen atom at the ${n^{th}}$ energy level is given by,
${E_n} = \dfrac{{ - 13.6}}{{{n^2}}}eV$
The energy required to excite the hydrogen atom from the ground state to its second excited state will be equal to the difference between the energies of the excited state and the ground state of the hydrogen atom,
i.e.
For ground state,$n = 1$
For the second excited state,$n = 3$
The difference in energy can be written as,
${E_n} = \dfrac{{ - 13.6}}{{{3^2}}} - \dfrac{{ - 13.6}}{{{1^2}}}$
Taking common values outside, we get
${E_n} = - 13.6\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{1^2}}}} \right)$
This can be written as,
${E_n} = 13.6\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{3^2}}}} \right)$
$ \Rightarrow {E_n} = 12.08eV$
The answer is: $12.08eV$
Note:
In the expression for the energy of the ${n^{th}}$energy level, there is a negative sign. This negative sign shows that the electron is bound to the nucleus. If we can provide an energy of $\dfrac{{13.6}}{{{n^2}}}eV$ to the electron located in the ${n^{th}}$orbit, it can escape to a point infinitely far away from the nucleus of the atom. The lowest energy level of an atom is called its ground state.
Formula used
${E_n} = \dfrac{{ - 13.6}}{{{n^2}}}eV$
Where ${E_n}$ is the energy of the hydrogen atom in the ${n^{th}}$ energy level and $n$ stands for the required energy level to which we excite the atom. We get the constant value of $13.6$ through calculation.
Complete step by step solution:
We know that the energy of the hydrogen atom at the ${n^{th}}$ energy level is given by,
${E_n} = \dfrac{{ - 13.6}}{{{n^2}}}eV$
The energy required to excite the hydrogen atom from the ground state to its second excited state will be equal to the difference between the energies of the excited state and the ground state of the hydrogen atom,
i.e.
For ground state,$n = 1$
For the second excited state,$n = 3$
The difference in energy can be written as,
${E_n} = \dfrac{{ - 13.6}}{{{3^2}}} - \dfrac{{ - 13.6}}{{{1^2}}}$
Taking common values outside, we get
${E_n} = - 13.6\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{1^2}}}} \right)$
This can be written as,
${E_n} = 13.6\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{3^2}}}} \right)$
$ \Rightarrow {E_n} = 12.08eV$
The answer is: $12.08eV$
Note:
In the expression for the energy of the ${n^{th}}$energy level, there is a negative sign. This negative sign shows that the electron is bound to the nucleus. If we can provide an energy of $\dfrac{{13.6}}{{{n^2}}}eV$ to the electron located in the ${n^{th}}$orbit, it can escape to a point infinitely far away from the nucleus of the atom. The lowest energy level of an atom is called its ground state.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main