
Empirical formula of a compound is \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\] and its molecular mass is 90, the molecular formula of the compound is :
A ) \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\]
B ) \[{{\text{C}}_{2}}{{\text{H}}_{\text{4}}}{{\text{O}}_{2}}\]
C ) \[{{\text{C}}_{6}}{{\text{H}}_{\text{12}}}{{\text{O}}_{6}}\]
D ) \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\]
Answer
125.1k+ views
Hint: Multiply the empirical formula with the ratio of the molecular formula weight to the Empirical formula weight to obtain the molecular formula.
Complete step by step answer:
The molecular formula gives the actual number of atoms of each element present in one molecule of a compound. The empirical formula gives the smallest whole number ratio of atoms of various elements present in a molecule of the given compound. In some cases, the empirical formula is same as the molecular formula. However in other compounds, empirical formula and the molecular formula are different. The relationship between the empirical formula and the molecular formula is as given below:
\[\text{Molecular formula = n }\times \text{ empirical formula }\]
Here, n is the ratio of the molecular formula weight to the empirical formula weight:
\[\text{n=}\dfrac{\text{Molecular formula weight}}{\text{Empirical formula weight}}\]
The atomic masses of carbon, hydrogen and oxygen are \[12\text{ }g/mol,\text{ }1\text{ }g/mol\text{ }and\text{ }16\text{ }g/mol\] respectively.
Empirical formula of a compound is \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\].
Calculate the empirical formula mass.
\[12\text{ }+2\left( 1 \right)+16=30\text{ }g/mol\]
The molecular mass is \[90\text{ }g/mol\].
Divide molecular formula weight with empirical formula weight to calculate n.
\[\begin{align}
& \text{n=}\dfrac{90\text{ g/mol}}{30\text{ g/mol}} \\
& \text{n=3} \\
\end{align}\]
Multiply empirical formula with 3 to obtain the molecular formula.
\[\begin{align}
& \text{Molecular formula = n }\times \text{ empirical formula } \\
& \text{Molecular formula = 3 }\times \text{ C}{{\text{H}}_{2}}\text{O } \\
& \text{Molecular formula = }{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}} \\
\end{align}\]
Hence, the molecular formula of the compound is \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\]:
Hence, the option A) \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\] is the correct option.
Note:
We can also calculate the mass of molecular given in the four options and match it with the options
For \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\], \[3\left( 12 \right)+6\left( 1 \right)+3\left( 16 \right)=36+6+48=90\]
For \[{{\text{C}}_{2}}{{\text{H}}_{\text{4}}}{{\text{O}}_{2}}\], \[2\left( 12 \right)+4\left( 1 \right)+2\left( 16 \right)=24+4+32=60\]
For \[{{\text{C}}_{6}}{{\text{H}}_{\text{12}}}{{\text{O}}_{6}}\], \[6\left( 12 \right)+12\left( 1 \right)+6\left( 16 \right)=72+12+96=180\]
For \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\] \[12+2\left( 1 \right)+16=30\]
The molecular mass of \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\] matches with that of given compound hence it is correct.
Complete step by step answer:
The molecular formula gives the actual number of atoms of each element present in one molecule of a compound. The empirical formula gives the smallest whole number ratio of atoms of various elements present in a molecule of the given compound. In some cases, the empirical formula is same as the molecular formula. However in other compounds, empirical formula and the molecular formula are different. The relationship between the empirical formula and the molecular formula is as given below:
\[\text{Molecular formula = n }\times \text{ empirical formula }\]
Here, n is the ratio of the molecular formula weight to the empirical formula weight:
\[\text{n=}\dfrac{\text{Molecular formula weight}}{\text{Empirical formula weight}}\]
The atomic masses of carbon, hydrogen and oxygen are \[12\text{ }g/mol,\text{ }1\text{ }g/mol\text{ }and\text{ }16\text{ }g/mol\] respectively.
Empirical formula of a compound is \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\].
Calculate the empirical formula mass.
\[12\text{ }+2\left( 1 \right)+16=30\text{ }g/mol\]
The molecular mass is \[90\text{ }g/mol\].
Divide molecular formula weight with empirical formula weight to calculate n.
\[\begin{align}
& \text{n=}\dfrac{90\text{ g/mol}}{30\text{ g/mol}} \\
& \text{n=3} \\
\end{align}\]
Multiply empirical formula with 3 to obtain the molecular formula.
\[\begin{align}
& \text{Molecular formula = n }\times \text{ empirical formula } \\
& \text{Molecular formula = 3 }\times \text{ C}{{\text{H}}_{2}}\text{O } \\
& \text{Molecular formula = }{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}} \\
\end{align}\]
Hence, the molecular formula of the compound is \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\]:
Hence, the option A) \[{{\text{C}}_{3}}{{\text{H}}_{6}}{{\text{O}}_{3}}\] is the correct option.
Note:
We can also calculate the mass of molecular given in the four options and match it with the options
For \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\], \[3\left( 12 \right)+6\left( 1 \right)+3\left( 16 \right)=36+6+48=90\]
For \[{{\text{C}}_{2}}{{\text{H}}_{\text{4}}}{{\text{O}}_{2}}\], \[2\left( 12 \right)+4\left( 1 \right)+2\left( 16 \right)=24+4+32=60\]
For \[{{\text{C}}_{6}}{{\text{H}}_{\text{12}}}{{\text{O}}_{6}}\], \[6\left( 12 \right)+12\left( 1 \right)+6\left( 16 \right)=72+12+96=180\]
For \[\text{C}{{\text{H}}_{\text{2}}}\text{O}\] \[12+2\left( 1 \right)+16=30\]
The molecular mass of \[{{\text{C}}_{3}}{{\text{H}}_{\text{6}}}{{\text{O}}_{3}}\] matches with that of given compound hence it is correct.
Recently Updated Pages
JEE Main 2023 April 13 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 1) Physics Question Paper with Answer Key

Addition of Three Vectors Important Concepts and Tips for JEE

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

Chemical Bonding and Molecular Structure Chapter for JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
