
Dissolution of a non-volatile solute into a liquid leads to:
(A) a decrease of entropy
(B) an increase in tendency of the liquid to freeze
(C) an increase in tendency to pass into the vapour phase
(D) a decrease in tendency of the liquid to freeze
Answer
218.4k+ views
Hint:This question is based on the concept of molal depression constant, or we can say that the freezing point depression. We have to relate the freezing point depression to the non-volatile solutes.
Complete step by step solution:First, we will know about the freezing point of liquid. > When the liquid, and solid state exists in the equilibrium that temperature is defined as the freezing point of the liquid.
> In the other terms, when the solid, and liquid state have the same vapour pressure, that temperature is also known as the freezing point of liquid.
> When we dissolve non-electrolyte, non-volatile in pure solvent; the vapour pressure of the solvent is lowered.
> Now, we can say that the non-volatile solute containing the solution has greater entropy than the pure liquid.
> So, the non-volatile solution will have less tendency to freeze.
> Thus, we can say that there is a decrease in freezing point of solution on the addition of non-volatile solutes.
> In the last, we can conclude that the dissolution of a non-volatile solute into a liquid leads to a decrease in tendency of the liquid to freeze.
Hence, the correct option is (D).
Note: Don’t get confused while defining the non-volatile solute in consideration with the freezing point, as the decrease in vapour pressure leads to the decrease in freezing point of a solution in terms of non-electrolyte. In case of pure liquids, it is dependable on the number of dissolved non-volatile solute particles.
Complete step by step solution:First, we will know about the freezing point of liquid. > When the liquid, and solid state exists in the equilibrium that temperature is defined as the freezing point of the liquid.
> In the other terms, when the solid, and liquid state have the same vapour pressure, that temperature is also known as the freezing point of liquid.
> When we dissolve non-electrolyte, non-volatile in pure solvent; the vapour pressure of the solvent is lowered.
> Now, we can say that the non-volatile solute containing the solution has greater entropy than the pure liquid.
> So, the non-volatile solution will have less tendency to freeze.
> Thus, we can say that there is a decrease in freezing point of solution on the addition of non-volatile solutes.
> In the last, we can conclude that the dissolution of a non-volatile solute into a liquid leads to a decrease in tendency of the liquid to freeze.
Hence, the correct option is (D).
Note: Don’t get confused while defining the non-volatile solute in consideration with the freezing point, as the decrease in vapour pressure leads to the decrease in freezing point of a solution in terms of non-electrolyte. In case of pure liquids, it is dependable on the number of dissolved non-volatile solute particles.
Recently Updated Pages
Class 12 Chemistry Mock Test Series for JEE Main – Free Online Practice

Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Haloalkanes and Haloarenes Class 12 Chemistry Chapter 6 CBSE Notes - 2025-26

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

